全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antimicrobial Activity of Cladonia verticillaris Lichen Preparations on Bacteria and Fungi of Medical Importance

DOI: 10.1155/2014/219392

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cladonia verticillaris lichen lectin (ClaveLL) was purified using a previously established protocol and then evaluated for its potential antimicrobial activity. Initially, the autochthonous lichen was submitted to extraction with sodium phosphate buffer pH 7.0, followed by filtration and centrifugation to obtain crude extract. A salt fractionation was performed with 30% ammonium sulfate. After centrifugation, the protein fraction was loaded onto molecular exclusion chromatography using Sephadex G-100 matrix to purify active lectin. ClaveLL showed antibacterial activity against Gram-positive (Bacillus subtilis, Staphylococcus aureus, and Enterococcus faecalis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) assayed strains, with greater inhibitory effect on growth of E. coli (MIC of 7.18?μg?mL?1). The lowest minimum bactericidal concentration (MBC, 57.4?μg?mL?1) was detected against E. faecalis. The antifungal assay performed with Trichophyton mentagrophytes, Microsporum gypseum, Trichophyton rubrum, Trichosporon cutaneum, and Trichosporon asahi evaluated crude extract, fraction, and ClaveLL preparations. ClaveLL was the most active against T. rubrum with an inhibition percentage of 35% compared to negative control (phosphate buffer). Extract and fraction showed better activity on growth inhibition of T. mentagrophytes (35%). The results indicate the potential of ClaveLL and other C. verticillaris preparations as antimicrobial agents useful for applications focusing on human health. 1. Introduction The treatment of diseases caused by bacteria and fungi is becoming an issue of concern, due to the growing emergence of microorganism strains resistant to drugs and opportunistic fungi that cause serious infections in humans [1, 2]. Microbial resistance is a genetic phenomenon, in which the microorganisms have genes that encode biochemical mechanisms which prevent drug actions. It may be caused by mutations in the reproductive process of the microorganisms or by imported genes acquired through transduction, conjugation, and transformation mechanisms [3]. Microbial resistance is sometimes due to natural evolution of microorganisms; however, it gains importance through the excessive use of antimicrobial substances in medical, agricultural, and veterinary practices [4]. Therefore, the search for new antibiotics from natural sources has increased as an alternative to commercial drugs. Lichens are symbiotic associations between fungus and one or more algae and/or cyanobacteria [5]. Species of the genus Cladonia have been used in folk medicine to

References

[1]  D. Marchaim, L. Lemanek, S. Bheemreddy, K. S. Kaye, and J. D. Sobel, “Fluconazole-resistant Candida albicans vulvovaginitis,” Obstetrics & Gynecology, vol. 120, pp. 1407–1414, 2012.
[2]  N. H. Yim, Y. P. Jung, W. K. Cho et al., “Screening of aqueous extracts of medicinal herbs for antimicrobial activity against oral bacteria,” Integrative Medicine Research, vol. 2, no. 1, pp. 18–24, 2013.
[3]  J. Davies and D. Davies, “Origins and evolution of antibiotic resistance,” Microbiology and Molecular Biology Reviews, vol. 74, no. 3, pp. 417–433, 2010.
[4]  P. Srivastava, D. K. Upreti, T. N. Dhole, A. K. Srivastava, and M. T. Nayak, “Antimicrobial property of extracts of Indian lichen against human pathogenic bacteria,” Interdisciplinary Perspectives on Infectious Diseases, vol. 2013, Article ID 709348, 6 pages, 2013.
[5]  U. Kaasalainen, D. P. Fewer, J. Jokela, M. Wahlsten, K. Sivonen, and J. Rikkinen, “Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 15, pp. 5886–5891, 2012.
[6]  I. Ziment, “Herbal antitussives,” Pulmonary Pharmacology & Therapeutics, vol. 15, no. 3, pp. 327–333, 2002.
[7]  B. Q. Lin, P. B. Li, Y. G. Wang et al., “The expectorant activity of naringenin,” Pulmonary Pharmacology & Therapeutics, vol. 21, no. 2, pp. 259–263, 2008.
[8]  N. T. Manojlovic, S. Solujic, and S. Sukdolak, “Antimicrobial activity of an extract and anthraquinones from Caloplaca schaereri,” The Lichenologist, vol. 34, no. 1, pp. 83–85, 2002.
[9]  M. T. Saenz, M. D. Garcia, and J. G. Rowe, “Antimicrobial activity and phytochemical studies of some lichens from south of Spain,” Fitoterapia, vol. 77, no. 3, pp. 156–159, 2006.
[10]  M. D. C. Silva, R. A. Sá, T. H. Napole?o et al., “Purified Cladonia verticillaris lichen lectin: insecticidal activity on Nasutitermes corniger (Isoptera: Termitidae),” International Biodeterioration & Biodegradation, vol. 63, no. 3, pp. 334–340, 2009.
[11]  A. M. Yano-Melo, C. Vicente, and L. Xavier-Filho, “Allelopathic efect of the Cladonia verticillaris lichen extracts and fumarprotocetraric acid on the early growth of germinated seedlings in Allium cepa L.,” Tropical Bryology, vol. 17, pp. 133–139, 1999.
[12]  G. M. B. Alves, M. B. S. Maia, E. S. Franco et al., “Expectorant and antioxidant activities of purified fumarprotocetraric acid from Cladonia verticillaris lichen in mice,” Pulmonary Pharmacology & Therapeutics, 2013.
[13]  R. A. Sá, F. S. Gomes, T. H. Napole?o et al., “Antibacterial and antifungal activities of Myracrodruon urundeuva heartwood,” Wood Science and Technology, vol. 43, no. 1-2, pp. 85–95, 2009.
[14]  R. M. P. B. Costa, A. F. M. Vaz, M. L. V. Oliva, L. C. B. B. Coelho, M. T. S. Correia, and M. G. Carneiro-da-Cunha, “A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties,” Process Biochemistry, vol. 45, no. 4, pp. 526–533, 2010.
[15]  E. D. S. Nunes, M. A. A. Souza, A. F. D. M. Vaz et al., “Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom,” Comparative Biochemistry and Physiology B, vol. 159, no. 1, pp. 57–63, 2011.
[16]  P. M. G. Paiva, E. V. Pontual, T. H. Napole?o, and L. C. B. B. Coelho, “Effects of plant lectins and trypsin inhibitors on development, morphology and biochemistry of insect larvae,” in Larvae: Morphology, Biology and Life Cycle, Nova Science, New York, NY, USA, 2012.
[17]  F. S. Gomes, T. F. Procópio, T. H. Napole?o, L. C. B. B. Coelho, and P. M. G. Paiva, “Antimicrobial lectin from Schinus terebinthifolius leaf,” Journal of Applied Microbiology, vol. 114, no. 3, pp. 672–679, 2013.
[18]  P. M. G. Paiva, F. S. Gomes, T. H. Napole?o, R. A. Sá, M. T. S. Correia, and L. C. B. B. Coelho, “Antimicrobial activity of secondary metabolites and lectins from plants,” in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, pp. 396–406, Formatex Research Center, Badajoz, Spain, 2010.
[19]  C. Girmenia, L. Pagano, B. Martino et al., “Invasive infections caused by Trichosporon species and Geotrichum capitatum in patients with hematological malignancies: a retrospective multicenter study from Italy and review of the literature,” Journal of Clinical Microbiology, vol. 43, no. 4, pp. 1818–1828, 2005.
[20]  M. T. S. Correia, L. C. B. B. Coelho, and P. M. G. Paiva, “Lectins, carbohydrate recognition molecules: are they toxic?” in Recent Trends in Toxicology, Y. H. Siddique, Ed., vol. 37, pp. 47–59, Transworld Research Network, Kerala, India, 2008.
[21]  D. H. Bing, J. G. Weyand, and A. B. Stavitsky, “Hemagglutination with aldehyde-fixed erythrocytes for assay of antigens and antibodies,” Proceedings of the Society for Experimental Biology and Medicine, vol. 124, no. 4, pp. 1166–1170, 1967.
[22]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[23]  D. Amsterdam, “Susceptibility testing of antimicrobials in liquid media,” in Antibiotics in Laboratory Medicine, V. Loman, Ed., pp. 52–111, Williams & Wilkins, Baltimore, Md, USA, 4th edition, 1996.
[24]  J. H. Wong and T. B. Ng, “Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase,” Peptides, vol. 26, no. 7, pp. 1120–1126, 2005.
[25]  R. Dziarski, M. M. Rasenick, and D. Gupta, “Bacterial peptidoglycan binds to tubulin,” Biochimica et Biophysica Acta, vol. 1524, no. 1, pp. 17–26, 2000.
[26]  A. S. Riera, A. Daud, A. Gallo, S. Genta, M. Aybar, and S. Sánchez, “Antibacterial activity of lactose-binding lectins from Bufo arenarum skin,” Biocell, vol. 27, no. 1, pp. 37–46, 2003.
[27]  K. G. Takahashi, T. Kuroda, and K. Muroga, “Purification and antibacterial characterization of a novel isoform of the Manila clam lectin (MCL-4) from the plasma of the Manila clam, Ruditapes philippinarum,” Comparative Biochemistry and Physiology B, vol. 150, no. 1, pp. 45–52, 2008.
[28]  S. M. Kawsar, S. M. Mamun, M. S. Rahman, H. Yasumitsu, and Y. Ozeki, “In-vitro antibacterial and antifungal effects of a 30 kDa D-galactoside-specific lectin from the Demosponge, Halichondria okadai,” International Journal of Biological Sciences, vol. 6, no. 1, pp. 31–37, 2010.
[29]  T. Santi-Gadelha, C. A. A. Gadelha, K. S. Arag?o et al., “Purification and biological effects of Araucaria angustifolia (Araucariaceae) seed lectin,” Biochemical and Biophysical Research Communications, vol. 350, no. 4, pp. 1050–1055, 2006.
[30]  M. D. L. Oliveira, C. A. S. Andrade, N. S. Magalh?es et al., “Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity,” Letters in Applied Microbiology, vol. 46, no. 3, pp. 371–376, 2008.
[31]  N. B. Perry, M. H. Benn, N. J. Brennan et al., “Antimicrobial, antiviral and cytotoxic activity of New Zealand lichens,” The Lichenologist, vol. 31, no. 6, pp. 627–636, 1999.
[32]  D.-J. Yun, J. I. Ibeas, H. Lee et al., “Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility,” Molecular Cell, vol. 1, no. 6, pp. 807–817, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413