全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chronic Kidney Disease—Effect of Oxidative Stress

DOI: 10.1155/2014/216210

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chronic kidney disease (CKD) is a growing health problem with increasing incidence. The annual mortality of end-stage renal disease patients is about 9%, which is 10–20 fold higher than the general population, approximately 50% of these deaths are due to cardiovascular (CV) disease. CV risk factors, such as diabetes, hypertension, and hyperlipidemia, are strongly associated with poor outcome. Many other nontraditional risk factors such as inflammation, infection, oxidative stress, anemia, and malnutrition are also present. In this review we will focus on the role of oxidative stress in chronic kidney disease. 1. Introduction Chronic kidney disease (CKD) is a growing health problem with increasing incidence. In the United States, approximately 8 million adults have stage 3 CKD and about 400?000 have end-stage renal disease (ESRD), with over 300?000 of them on maintenance dialysis (MHD). The annual mortality of ESRD patients is about 9%, which is 10–20-fold higher than the general population; approximately 50% of these deaths are due to cardiovascular (CV) disease [1]. CKD is associated with high cardiovascular risk which is not fully due to traditional CV risk factors. CV risk factors, such as diabetes, hypertension, and hyperlipidemia, are strongly associated with poor outcome; other nontraditional risk factors are also present such as renal-specific risk factors: uraemia or dialysis and extrarenal risk factors: proteinuria, chronic volume overload, increased renin-angiotensin system activity, inflammation, infection, oxidative stress, altered calcium and phosphorus metabolism, anemia, malnutrition, elevated levels of homocysteine, uraemic toxins, and thrombogenic factors [1]. Changes in serum cytokines begin at an early phase of renal dysfunction. High levels of cytokines lead to changes in the levels of many acute phase proteins like c-reactive protein (CRP), albumin, brain natriuretic peptide (BNP), adiponectin, fetuin, and asymmetric dimethylargainine. Changes in these proteins can predict intima-media thickness of carotid artery and left ventricular hypertrophy leading to accelerated cardiovascular mortality. Chronic inflammation is a possible mediator between microvascular and macrovascular disease. Oxidative stress may accelerate atherogenesis, and hence make a significant contribution to the increased CV disease burden in CKD patients. Oxidative stress may actually represent a new target for therapeutic intervention. In this review, first we will discuss the role and the biochemical burden of diabetes and dyslipidemia in CKD and then focus on

References

[1]  M. P. Kao, D. S. Ang, A. Pall, and A. D. Struthers, “Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options,” Journal of human hypertension, vol. 24, no. 1, pp. 1–8, 2010.
[2]  W. H. Sheu and Y. Sheen, “Metabolic syndrome and renal injury,” Cardiology Research and Practice, vol. 1, no. 1, Article ID 567389, 2011.
[3]  P. Iglesias and J. J. Díez, “Adipose tissue in renal disease: clinical significance and prognostic implications,” Nephrology Dialysis Transplantation, vol. 25, no. 7, pp. 2066–2077, 2010.
[4]  I. Lee, C. Huang, W. Lee, H. Lee, and W. H.-H. Sheu, “Aggravation of albuminuria by metabolic syndrome in type 2 diabetic Asian subjects,” Diabetes Research and Clinical Practice, vol. 81, no. 3, pp. 345–350, 2008.
[5]  J. Lucove, S. Vupputuri, G. Heiss, K. North, and M. Russell, “Metabolic syndrome and the development of CKD in American Indians: the StrongHeart Study,” American Journal of Kidney Diseases, vol. 51, no. 1, pp. 21–28, 2008.
[6]  M. P. Delaney, C. P. Price, and D. J. Newman, “Edmund lamb. Kidney disase,” in Tietz Texstbook of Clinical Biochemistry, pp. 1670–1745, Saunders, 4th edition, 2006.
[7]  V. Krane and C. Wanner, “The metabolic burden of diabetes and dyslipidaemia in chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 17, no. 11, pp. 23–27, 2002.
[8]  T. Quaschning, V. Krane, T. Metzger, and C. Wanner, “Abnormalities in uremic lipoprotein metabolism and its impact on cardiovascular disease,” American Journal of Kidney Diseases, vol. 38, supplement 1, pp. S14–S19, 2001.
[9]  H. J. Goldberg, J. Scholey, and I. G. Fantus, “Glucosamine activates the plasminogen activator inhibitor 1 gene promoter through Sp1 DNA binding sites in glomerular mesangial cells,” Diabetes, vol. 49, no. 5, pp. 863–871, 2000.
[10]  M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001.
[11]  S. Goh and M. E. Cooper, “The role of advanced glycation end products in progression and complications of diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 4, pp. 1143–1152, 2008.
[12]  A. Flyvbjerg, L. Denner, B. F. Schrijvers et al., “Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice,” Diabetes, vol. 53, no. 1, pp. 166–172, 2004.
[13]  J. M. Forbes, T. Soulis, V. Thallas et al., “Renoprotective effects of a novel inhibitor of advanced glycation,” Diabetologia, vol. 44, no. 1, pp. 108–114, 2001.
[14]  H. Honda, M. Ueda, S. Kojima, et al., “Assessment of myeloperoxidase and oxidative α-antitrypsin in patients on hemodialysis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 1, pp. 142–151, 2009.
[15]  N. Le and E. O. Gosmanova, “Cardiovascular complications in CKD patients: role of oxidative stress,” Cardiology Research and Practice, vol. 1, no. 1, Article ID 156326, 2011.
[16]  K.-L. Kuo and D.-C. Tarng, “Oxidative stress in chronic kidney disease,” Adaptive Medicine, vol. 2, no. 2, pp. 87–94, 2010.
[17]  W. Dr?ge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002.
[18]  V. Witko-Sarsat, M. Friedlander, T. N. Khoa et al., “Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure,” Journal of Immunology, vol. 161, no. 5, pp. 2524–2532, 1998.
[19]  T. Drüeke, V. Witko-Sarsat, Z. Massy et al., “Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease,” Circulation, vol. 106, no. 17, pp. 2212–2217, 2002.
[20]  X. Yang, F. Hou, Q. Wu et al., “Increased levels of advanced oxidation protein products are associated with atherosclerosis in chronic kidney disease,” Zhonghua Nei Ke Za Zhi, vol. 44, no. 5, pp. 342–346, 2005.
[21]  T. Shoji, E. Kimoto, K. Shinohara et al., “The association of antibodies against oxidized low-density lipoprotein with atherosclerosis in hemodialysis patients,” Kidney International, Supplement, vol. 63, no. 84, pp. S128–S130, 2003.
[22]  F. Locatelli, B. Canaud, K. Eckardt, P. Stenvinkel, C. Wanner, and C. Zoccali, “Oxidative stress in end-stage renal disease: an emerging treat to patient outcome,” Nephrology Dialysis Transplantation, vol. 18, no. 7, pp. 1272–1280, 2003.
[23]  I. Ceballos-Picot, V. Witko-Sarsat, M. Merad-Boudia et al., “Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure,” Free Radical Biology and Medicine, vol. 21, no. 6, pp. 845–853, 1996.
[24]  R. J. Esper, R. A. Nordaby, J. O. Vilari?o, A. Paragano, J. L. Cacharrón, and R. A. Machado, “Endothelial dysfunction: a comprehensive appraisal,” Cardiovascular Diabetology, vol. 5, article 4, 2006.
[25]  E. Paoletti, D. Bellino, P. Cassottana, D. Rolla, and G. Cannella, “Left ventricular hypertrophy in nondiabetic predialysis CKD,” American Journal of Kidney Diseases, vol. 46, no. 2, pp. 320–327, 2005.
[26]  T. Miyata, C. V. de Strihou, K. Kurokawa, and J. W. Baynes, “Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications,” Kidney International, vol. 55, no. 2, pp. 389–399, 1999.
[27]  V. Lahera, M. Goicoechea, S. G. de Vinuesa et al., “Oxidative stress in uremia: the role of anemia correction,” Journal of the American Society of Nephrology, vol. 17, pp. S174–S177, 2006.
[28]  M. Boaz, S. Smetana, T. Weinstein et al., “Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial,” The Lancet, vol. 356, no. 9237, pp. 1213–1218, 2000.
[29]  P. S. Sever, B. Dahl?f, N. R. Poulter et al., “Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial,” The Lancet, vol. 361, no. 9364, pp. 1149–1158, 2003.
[30]  S. Wassmann, U. Laufs, A. T. B?umer et al., “HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species,” Hypertension, vol. 37, no. 6, pp. 1450–1457, 2001.
[31]  SHARP Collaborative Group, “Study of Heart and Renal Protection (SHARP): randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9, 438 patients with chronic kidney disease,” American Heart Journal, vol. 160, no. 5, pp. 785–794, 2010.
[32]  M. L. Wratten, C. Navino, C. Tetta, and G. Verzetti, “Haemolipodialysis,” Blood Purification, vol. 17, no. 2-3, pp. 127–133, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413