全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cow Dung Substrate for the Potential Production of Alkaline Proteases by Pseudomonas putida Strain AT in Solid-State Fermentation

DOI: 10.1155/2014/217434

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cow dung and agroresidues were used as the substrates for the production of alkaline proteases by Pseudomonas putida strain AT in solid-state fermentation. Among the various substrates evaluated, cow dung supported maximum ( ?U/g) protease production. The optimum conditions for the production of alkaline proteases were a fermentation period of 48?h, 120% (v/w) moisture, pH 9, and the addition of 6% (v/w) inoculum, 1.5% (w/w) trehalose, and 2.0% (w/w) yeast extract to the cow dung substrate. The enzyme was active over a range of temperatures (50–70°C) and pHs (8–10), with maximum activity at 60°C and pH 9. These enzymes showed stability towards surfactants, detergents, and solvent and digested various natural proteins. 1. Introduction Proteases constitute one of the commercially important groups of extracellular microbial enzymes and their annual sales account for 60% of the total world enzyme market [1]. Extracellular proteases find numerous applications in industrial processes, such as detergents, leather-tanning, dairy, meat-tenderization, baking, brewery, and photographic industry [2]. From an industrial point of view, it is estimated that around 30–40% of the production cost of industrial enzymes can be attributed to the cost of the growth medium [3]. According to Global Food Enzymes Market Report, it is expected that the global food enzyme market will reach $2.3 billion by 2018; North America is expected to lead the market, followed by Europe and Asia-Pacific. Solid-state fermentation (SSF) is preferred over submerged fermentation, because of its lower production cost. Agroindustrial residues which included wheat bran [4]; green gram husk [5]; coffee pulp and coffee husk [6]; and Imperata cylindrica grass and potato peel [7] were widely used in SSF. In this study, cow dung substrate (referred to as dungstrate hereafter) was used as a cheap substrate for the production of alkaline proteases for various biotechnological applications. Cow dung consists of ash (13.3-13.4%), nitrogen (1.2–1.6%), carbon sources, ions, and growth factors. As waste, cow dung still contains high amount of nutrients [8]. A few reports were available on the use of cow dung for the production of alkaline proteases, for example, cow dung and Halomonas sp. PV1 [9] and cow dung and Bacillus subtilis VV [10]. But there might hardly be any reports on the use of cow dung for the production of proteases by Pseudomonas sp. Even though Bacillus spp. have been viewed as a promising group of organisms for protease production for various industrial applications, Pseudomonas protease has

References

[1]  B. Turk, “Targeting proteases: successes, failures and future prospects,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 785–799, 2006.
[2]  V. Moses and R. E. Cape, Biotechnology, the Science and Business, Harwood Academic publishers, 1991.
[3]  H.-S. Joo, C. G. Kumar, G.-C. Park, S. R. Paik, and C.-S. Chang, “Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties,” Journal of Applied Microbiology, vol. 95, no. 2, pp. 267–272, 2003.
[4]  R. Rajkumar, J. K. Ranishree, and R. Ramasamy, “Production and characterization of a novel protease from Bacillus sp. RRM1 under solid state fermentation,” Journal of Microbiology and Biotechnology, vol. 21, no. 6, pp. 627–636, 2011.
[5]  R. S. Prakasham, C. S. Rao, and P. N. Sarma, “Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation,” Bioresource Technology, vol. 97, no. 13, pp. 1449–1454, 2006.
[6]  A. Pandey, C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos, “Biotechnological potential of coffee pulp and coffee husk for bioprocesses,” Biochemical Engineering Journal, vol. 6, no. 2, pp. 153–162, 2000.
[7]  A. K. Mukherjee, H. Adhikari, and S. K. Rai, “Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation,” Biochemical Engineering Journal, vol. 39, no. 2, pp. 353–361, 2008.
[8]  R. V. Misra, R. N. Roy, and H. Hiraoka, On Farm Composting Method, FAO, Rome, Italy.
[9]  P. Vijayaraghavan and S. G. P. Vincent, “Cow dung as a novel, inexpensive substrate for the production of a halo-tolerant alkaline protease by Halomonas sp. PV1 for eco-friendly applications,” Biochemical Engineering Journal, vol. 69, pp. 57–60, 2012.
[10]  P. Vijayaraghavan, A. Vijayan, A. Arun, J. K. Jenisha, and S. G. P. Vincent, “Cow dung: a potential biomass substrate for the production of detergent-stable dehairing protease by alkaliphilic Bacillus subtilis strain VV,” SpringerPlus, vol. 1, article 76, 2012.
[11]  A. Gupta, I. Roy, R. K. Patel, S. P. Singh, S. K. Khare, and M. N. Gupta, “One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp,” Journal of Chromatography A, vol. 1075, no. 1-2, pp. 103–108, 2005.
[12]  H. Ogino, K. Yasui, T. Shiotani, T. Ishihara, and H. Ishikawa, “Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme,” Applied and Environmental Microbiology, vol. 61, no. 12, pp. 4258–4262, 1995.
[13]  R. Rahman, L. P. Geok, M. Basri, and A. B. Salleh, “An organic solvent-tolerant protease from Pseudomonas aeruginosa strain K: nutritional factors affecting protease production,” Enzyme and Microbial Technology, vol. 36, no. 5-6, pp. 749–757, 2005.
[14]  H. Kumura, K. Mikawa, and Z. Saito, “Purification and some properties of proteinase from Pseudomonas fluorescens,” Journal of Dairy Research, vol. 60, no. 2, pp. 229–237, 1993.
[15]  Y. Triki-Ellouz, B. Ghorbel, N. Souissi, S. Kammoun, and M. Nasri, “Biosynthesis of protease by Pseudomonas aeruginosa MN7 grown on fish substrate,” World Journal of Microbiology and Biotechnology, vol. 19, no. 1, pp. 41–45, 2003.
[16]  K. Kalaiarasi and P. U. Sunitha, “Optimization of alkaline protease production from Pseudomonas fluorescens isolated from meat waste contaminated soil,” African Journal of Biotechnology, vol. 8, no. 24, pp. 7035–7041, 2009.
[17]  R. Gupta, Q. K. Beg, S. Khan, and B. Chauhan, “An overview on fermentation, downstream processing and properties of microbial alkaline proteases,” Applied Microbiology and Biotechnology, vol. 60, no. 4, pp. 381–395, 2003.
[18]  D. Jones and M. D. Collins, “Irregular, nonsporeforming Gram-positive rods,” in Bergey’s Manual of Systematic Bacteriology, P. H. A. Sneath, Ed., vol. 2, pp. 1261–1434, Williams and Wilkins, Baltimore, Md, USA, 1984.
[19]  W. G. Weisburg, S. M. Barns, D. A. Pelletier, and D. J. Lane, “16S ribosomal DNA amplification for phylogenetic study,” Journal of Bacteriology, vol. 173, no. 2, pp. 697–703, 1991.
[20]  D. C. Kim, N. S. Oh, and M. J. In, “Effect of carbon and nitrogen sources on cell growth and halotolerant alkaline protease production in Halomonas marisflava isolated from salt-fermented food,” Food Science and Biotechnology, vol. 13, pp. 837–840, 2004.
[21]  A. G. Kumar, S. Swarnalatha, B. Sairam, and G. Sekaran, “Production of alkaline protease by Pseudomonas aeruginosa using proteinaceous solid waste generated from leather manufacturing industries,” Bioresource Technology, vol. 99, no. 6, pp. 1939–1944, 2008.
[22]  S.-L. Wang, C.-H. Yang, T.-W. Liang, and Y.-H. Yen, “Optimization of conditions for protease production by Chryseobacterium taeanense TKU001,” Bioresource Technology, vol. 99, no. 9, pp. 3700–3707, 2008.
[23]  P. Manivasagan, J. Venkatesan, K. Sivakumar, and S.-K. Kim, “Production, characterization and antioxidant potential of protease from Streptomyces sp. MAB18 using poultry wastes,” BioMed Research International, vol. 2013, Article ID 496586, 12 pages, 2013.
[24]  M. S. Haque and M. N. Haque, “Studies on the effect of urine on biogas production,” Bangladesh Journal of Scientific and Industrial Research, vol. 41, no. 1-2, pp. 23–32, 2006.
[25]  U. Patil and A. Chaudhari, “Optimal production of alkaline protease from solvent-tolerant alkalophilic Pseudomonas aeruginosa MTCC 7926,” Indian Journal of Biotechnology, vol. 10, no. 3, pp. 329–339, 2011.
[26]  N. D. Mahadik, U. S. Puntambekar, K. B. Bastawde, J. M. Khire, and D. V. Gokhale, “Production of acidic lipase by Aspergillus niger in solid state fermentation,” Process Biochemistry, vol. 38, no. 5, pp. 715–721, 2002.
[27]  P. Ellaiah, B. Srinivasulu, and K. Adinarayana, “A review on microbial alkaline proteases,” Journal of Scientific and Industrial Research, vol. 61, no. 9, pp. 690–704, 2002.
[28]  X.-Y. Tang, B. Wu, H.-J. Ying, and B.-F. He, “Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121,” Applied Biochemistry and Biotechnology, vol. 160, no. 4, pp. 1017–1031, 2010.
[29]  S. Iyappan, K. Ramasamy, and S. Barathi, “Statistical media optimization and comparative proteome analysis for protease production from isolated Pseudomonas aeruginosa,” Journal of Pharmacy Research, vol. 5, no. 3, pp. 1451–1456, 2012.
[30]  M. A. Hassan, B. M. Haroun, A. A. Amara, and E. A. Serour, “Production and characterization of keratinolytic protease from new wool-degrading Bacillus species isolated from Egyptian ecosystem,” BioMed Research International, vol. 2013, Article ID 175012, 14 pages, 2013.
[31]  M. F. Najafi, D. Deobagkar, and D. Deobagkar, “Potential application of protease isolated from Pseudomonas aeruginosa PD100,” Electronic Journal of Biotechnology, vol. 8, no. 2, pp. 197–203, 2005.
[32]  D. Kumar, S. Savitri, N. Thakur, R. Verma, and T. C. Bhalla, “Microbial proteases and application as laundry detergent additive,” Research Journal of Microbiology, vol. 3, no. 12, pp. 661–672, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413