全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sugarcane Bagasse: A Potential Medium for Fungal Cultures

DOI: 10.1155/2014/840505

Full-Text   Cite this paper   Add to My Lib

Abstract:

Worldwide, sugarcane industries produce tons of sugarcane bagasse as residual/waste material. This residual material is rich in complex lignocellulosic substances and may be used as a low cost carbon and energy source for the growth of fungal species. The present work was aimed at designing a sugarcane waste-based medium as a substitute for expensive commercial media for growing fungal cultures. Eight species of fungi, namely, Aspergillus niger, Candida albicans, Saccharomyces cerevisiae, Fusarium sp., and four unidentified species F1, F2, F3, and F5, were grown on the sugarcane bagasse medium which produced remarkable results and competed with standard media like potato dextrose agar, Sabouraud dextrose agar, and cornmeal agar. The designed medium was able to provide nourishment to the fungi as well as prevent the growth of any bacterial or fungal contaminant. The production of spores was more in the sugarcane medium as compared with standard media. Hence, this study led to the discovery of a new and efficient medium for fungal cultures as well as decrease in the waste disposal expenses and efforts. 1. Introduction The cost of all the microbiological media is rising at a fast pace. To tackle this problem some new microbiological media should be designed which are efficient as well as cost effective. This may be achieved by using agricultural wastes as raw materials for microbial media. Utilization of agricultural waste as a substrate for fungal cultures for the production of value added products has been reported which includes cellulase production by some fungi cultured on pineapple waste [1]; carotenoids production is carried out on agricultural waste using Blakeslea trispora [2] and cellulase enzyme production on agricultural waste by Aspergillus niger [3]. Sugarcane bagasse has been also reported as an energy source for the production of lipase by Aspergillus fumigatus [4]. Sugarcane bagasse could be a material of choice for designing a new medium as it is easily available in large volumes. Sugarcane is one of the plants having the highest bioconversion efficiency of capturing sunlight through photosynthesis and is able to fix around 55 tons of dry matter per hectare of land annually. There are thousands of small and large scale industries worldwide which use sugarcane as raw material and produce tons of bagasse every year [5]. The sugarcane stalk consists of two parts, an inner pith containing most of the sucrose and an outer rind with lignocellulosic fibres. During sugar processing, the sugarcane stalk is crushed to extract sucrose [6]. This

References

[1]  P. F. Omojasola, Jilani, P. Omowumi, and S. A. Ibiyemi, “Cellulase production by some fungi cultured on pineapple waste,” Nature and Science, vol. 6, no. 2, pp. 64–79, 2008.
[2]  E. H. Papaioannou and M. Liakopoulou-Kyriakides, “Agro-food wastes utilization by Blakeslea trispora for carotenoids production,” Acta Biochimica Polonica, vol. 59, no. 1, pp. 151–153, 2012.
[3]  M. A. Milala, A. Shugaba, A. Gidado, A. C. Ene, and J. A. Wafar, “Studies on the use of agricultural wastes for cellulase enzyme production by Aspegillus niger,” Research Journal of Agriculture and Biological Sciences, vol. 1, no. 4, pp. 325–328, 2005.
[4]  S. H. A. Naqvi, M. U. Dahot, M. Y. Khan, J. H. Xu, and M. Rafiq, “Usage of sugar cane bagasse as an energy source for the production of lipase by Aspergillus fumigatus,” Pakistan Journal of Botany, vol. 45, no. 1, pp. 279–284, 2013.
[5]  G. J. V. Betancur and N. Pereira Jr., “Sugar cane bagasse as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization,” Electronic Journal of Biotechnology, vol. 13, no. 3, pp. 1–9, 2010.
[6]  R. Boopathy, “Use of post-harvest sugarcane residue in coastal reclamation: a feasibility study,” Sugar Cane International (January/February): 9–13, 2004.
[7]  M. O. S. Dias, A. V. Ensinas, S. A. Nebra, R. Maciel Filho, C. E. V. Rossell, and M. R. W. Maciel, “Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process,” Chemical Engineering Research and Design, vol. 87, no. 9, pp. 1206–1216, 2009.
[8]  L. Dawson and R. Boopathy, “Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification,” BioResources, vol. 3, no. 2, pp. 452–460, 2009.
[9]  C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, “Coordinated development of leading biomass pretreatment technologies,” Bioresource Technology, vol. 96, no. 18, pp. 1959–1966, 2005.
[10]  G. M. Zanin, C. C. Santana, E. P. S. Bon et al., “Brazilian Bioethanol Program,” Applied Biochemistry and Biotechnology, vol. 84-86, pp. 1147–1161, 2000.
[11]  A. Pandey, C. R. Soccol, P. Nigam, and V. T. Soccol, “Biotechnological potential of agro-industrial residues. I: sugarcane bagasse,” Bioresource Technology, vol. 74, no. 1, pp. 69–80, 2000.
[12]  M. Balat and H. Balat, “Recent trends in global production and utilization of bio-ethanol fuel,” Applied Energy, vol. 86, no. 11, pp. 2273–2282, 2009.
[13]  N. Mosier, C. Wyman, B. Dale et al., “Features of promising technologies for pretreatment of lignocellulosic biomass,” Bioresource Technology, vol. 96, no. 6, pp. 673–686, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413