全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Canthium parviflorum Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

DOI: 10.1155/2014/813201

Full-Text   Cite this paper   Add to My Lib

Abstract:

Canthium parviflorum leaves were analyzed for their proximate and phytochemical composition. The leaves were extracted with methanol (ME) and analyzed for antioxidant activity by radical scavenging method, reducing power, ferric reducing capacity, and in vitro inhibition of Fenton’s reagent induced oxidation in oil emulsion and microsomes. In addition, the effect of high temperature (100°C, 15 and 30?min) and pH (4.5, 7, and 9) on the antioxidant activity of ME was investigated. The leaves were rich in polyphenols, flavonoids β-carotene, glutathione, α-tocopherol, and ascorbic acid. The ME exhibited varying degree of antioxidant activity in a dose dependent manner. The RSA was 68%–500?μg. Reducing potency was 0.34 and FRAP was 1.377. Canthium exhibited greater inhibition of oxidation in microsomes (73%) than in the oil emulsion (21%). Heat treatment resulted in reduction of radical scavenging activity of extract from 68% to 40%. At pH 4.5 and 7 methanol extract exhibited some percent of antioxidant activity which ranged between 18 and 32%. Data indicates Canthium as a good source of antioxidants and methanol extract exhibited good antioxidant activity. 1. Introduction In recent years, secondary plant metabolites with unknown pharmacological activities have been extensively investigated as a source of medicinal agents. Natural antioxidants present in food and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic effects. The increasing interest in the search for natural replacements for synthetic antioxidants has led to the antioxidant evaluation of a number of plant sources [1] especially spices and herbs [2]. Screening active compounds from plants has led to the discovery of new medicinal drugs which have efficient protection and treatment roles against various degenerative diseases. In recent years, a large number of plants have been screened as a viable source of natural antioxidants such as tocopherol, vitamin C, carotenoids, and phenolic compounds which are responsible for maintenance of health [3, 4]. At present time, medicinal plants as rich source of natural bioactive components are given priority to study their antioxidant activity and explore their utilization in treatment of diabetes mellitus, dyslipidemia, and cardiovascular diseases. Our team has explored some medicinal plants, namely, Moringa oleifera [5], Morus indica [6], Aegle marmelos [7], Raphanus sativus [8], and Psidium guajava [9], for their antioxidant activity and stability. Before exploring a

References

[1]  A. Lugasi, J. Hóvári, K. V. Sági, and L. Bíró, “The role of antioxidant phytonutrients in the prevention of diseases,” Acta Biologica Szegediensis, vol. 47, no. 1–4, pp. 119–125, 2003.
[2]  N. Nakatani, “Antioxidants from spices and herbs,” in Natural Antioxidants. Chemistry, Health Effects and Applications, pp. 64–73, AOCS Press, Champaign, Ill, USA, 1997.
[3]  D. Prakash, S. Suri, G. Upadhyay, and B. N. Singh, “Total phenol, antioxidant and free radical scavenging activities of some medicinal plants,” International Journal of Food Sciences and Nutrition, vol. 58, no. 1, pp. 18–28, 2007.
[4]  C. Kaur and H. C. Kapoor, “Antioxidants in fruits and vegetables—the millennium's health,” International Journal of Food Science and Technology, vol. 36, no. 7, pp. 703–725, 2001.
[5]  A. Urooj and P. V. Reddy, “Moringa oleifera: antioxidant properties and stability of various solvent extracts,” International Journal of Pharmaceutical Science and Biotechnology, vol. 1, no. 1, pp. 1–6, 2010.
[6]  P. V. Reddy and A. Urooj, “Proximate, phytochemical profile and antioxidant activity (in vitro and ex vivo) of Morus indica varieties,” International Journal of Pharmaceutical Sciences and Research, vol. 4, no. 4, pp. 1626–1634, 2013.
[7]  P. V. Reddy and A. Urooj, “Antioxidant properties and stability of Aegle marmelos leaves extracts,” Journal of Food Science and Technology, vol. 50, no. 1, pp. 135–140, 2013.
[8]  P. V. Reddy, S. Desai, F. Ahmed, and A. Urooj, “Antioxidant properties and stability of Raphanus sativus extracts,” Journal of Pharmacy Research, vol. 3, no. 3, pp. 658–661, 2011.
[9]  P. V. Reddy, N. Sahana, and A. Urooj, “Antioxidant activity of Aegle marmelos and Psidium guajava leaves,” International Journal of Medicinal and Aromatic Plants, vol. 2, no. 1, pp. 155–160, 2012.
[10]  M. Ayyanar, K. Sankarasivaraman, and S. Ignacimuthu, “Traditional herbal medicines used or the treatment of diabetes among two major tribal groups in south Tamil Nadu, India,” Ethnobotanical Leaflets, vol. 12, pp. 276–280, 2008.
[11]  S. Chandra Kala, K. Mallikarjuna, and P. Arun, “Qualitative phyto chemical analysis of seed and leaf callus extracts of Canthium parviflorum Lam. Guntur District, Andhra, Pradesh,” International Journal of Pharma and Bio Sciences, vol. 3, no. 4, pp. 177–182, 2012.
[12]  AOAC, Official Methods of Analysis, AOAC International, Washington, DC, USA, 14th edition, 1984.
[13]  S. Ranganna, Handbook of Analysis and Quality Control for Fruits and Vegetables Products, McGrow-Hill, New Delhi, India, 2nd edition, 1999.
[14]  E. Beutler and B. M. Kelly, “The effect of sodium nitrite on red cell GSH,” Experientia, vol. 19, no. 2, pp. 96–97, 1963.
[15]  K. Slinkard and V. L. Singleton, “Total phenol analysis: automation and comparison with manual methods,” American Journal of Enology and Viticare, vol. 28, pp. 49–55, 1967.
[16]  G. Miliauskas, P. R. Venskutonis, and T. A. van Beek, “Screening of radical scavenging activity of some medicinal and aromatic plant extracts,” Food Chemistry, vol. 85, no. 2, pp. 231–237, 2004.
[17]  H. Fan, T. Zheng, Y. Chen, and G. Yang, “Chemical constituents with free-radical-scavenging activities from the stem of Fissistigma polyanthum,” Pharamacognosy Magazine, vol. 8, no. 30, pp. 98–102, 2012.
[18]  A. Yildirim, A. Mavi, and A. A. Kara, “Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts,” Journal of the Science of Food and Agriculture, vol. 83, no. 1, pp. 64–69, 2003.
[19]  I. F. F. Benzie and J. J. Strain, “Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration,” Methods in Enzymology, vol. 299, pp. 15–27, 1999.
[20]  H. Tamura and A. Yamagami, “Antioxidative activity of monoacylated anthocyanins isolated from Muscat Bailey A grape,” Journal of Agricultural and Food Chemistry, vol. 42, no. 8, pp. 1612–1615, 1994.
[21]  H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979.
[22]  D. J. Shapiro and V. W. Rodwell, “Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis,” The Journal of Biological Chemistry, vol. 246, no. 10, pp. 3210–3216, 1971.
[23]  J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978.
[24]  S. Arabshahi-Delouee, V. Devi, and A. Urooj, “Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability,” Food Chemistry, vol. 100, no. 3, pp. 1100–1105, 2007.
[25]  S. Mandal, S. Yadav, S. Yadav, and R. K. Nema, “Antioxidants: a review,” Journal of Chemical and Pharmaceutical Research, vol. 1, no. 1, pp. 102–104, 2009.
[26]  V. K. Gupta and S. K. Gupta, “Plants as natural antioxidants,” Natural Product Radiance, vol. 5, no. 6, pp. 326–334, 2006.
[27]  S. Arabshahi-Delouee and A. Urooj, “Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves,” Food Chemistry, vol. 102, no. 4, pp. 1233–1240, 2007.
[28]  C.-C. Wong, H.-B. Li, K.-W. Cheng, and F. Chen, “A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay,” Food Chemistry, vol. 97, no. 4, pp. 705–711, 2006.
[29]  L. J. Lizcano, M. Viloria-Bernal, F. Vicente et al., “Lipid oxidation inhibitory effects and phenolic composition of aqueous extracts from medicinal plants of colombian amazonia,” International Journal of Molecular Sciences, vol. 13, no. 5, pp. 5454–5467, 2012.
[30]  S. M. Zachariah, N. A. Aleykutty, V. Viswanad, S. Jacob, and V. Prabhakar, “In-vitro antioxidant potential of methanolic extracts of Mirabilis jalapa Linn,” Free Radicals and Antioxidants, vol. 1, no. 4, pp. 82–86, 2011.
[31]  P. V. Reddy, M. Sowmya, and A. Urooj, “Abrus precatorius leaves: antioxidant activity in food and biological systems, pH and temperature stability,” International Journal of Medicinal Chemistry, vol. 2014, Article ID 748549, 7 pages, 2014.
[32]  P. V. Reddy, A. Urooj, and A. Kumar, “Evaluation of antioxidant activity of some plant extracts and their application in biscuits,” Food Chemistry, vol. 90, no. 1-2, pp. 317–321, 2005.
[33]  E. H. Mansour and A. H. Khalil, “Evaluation of antioxidant activity of some plant extracts and their application to ground beef patties,” Food Chemistry, vol. 69, no. 2, pp. 135–141, 2000.
[34]  A. H. Azizah, N. M. Nik Ruslawati, and T. Swee Tee, “Extraction and characterization of antioxidant from cocoa by-products,” Food Chemistry, vol. 64, no. 2, pp. 199–202, 1999.
[35]  M. G. Miguel, “Antioxidant activity of medicinal and aromatic plants. A review,” Flavour and Fragrance Journal, vol. 25, no. 5, pp. 291–312, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413