全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Power Management Strategy for Active Power Sharing in Hydro/PV/Battery Hybrid Energy System

DOI: 10.1155/2013/723860

Full-Text   Cite this paper   Add to My Lib

Abstract:

Simulation and modeling of standalone DC linked hydro/PV/battery hybrid energy system (HES) and power management strategy (PMS) for identifying the active power sharing have been done. The performance analysis of the proposed HES and its power management strategy has been done using the simulink toolboxes of MATLAB software. The proposed system consists of 10?kW PV system, 7.5?kW hydro system, battery, and power condition unit. In some remote/rural areas, it is very difficult to satisfy the demand of electrical power throughout the year with the power grid. In such areas, the power requirement can be fulfilled by renewable energy system such as hydro or PV system. Either the hydro system or PV system is not capable of supplying power requirement throughout the year as both systems are intermittent. Hence, the judicious combination of hydro and PV system has been modeled for electrification. The power management strategy is modeled to manage the power flow of the energy systems and battery to fulfill the load demand. The presented results clearly show that the proposed HES and its control strategy are suitable for implementation in remote/rural areas. 1. Introduction Electrification of remote/isolated areas (where grid accessibility is not possible) may be possible by harnessing the renewable energy sources presented in the particular areas. Among these renewable energy sources, hydro and solar energy sources are more promising for electricity generation. The hydro and PV system are gaining the momentum of researchers for electrification in remote/rural areas. Either standalone hydro system or PV system is not sufficient to fulfill the power requirement throughout the year. Therefore, for getting the optimal results by combining the advantages of hydro and solar energy sources, PV/hydro hybrid system has been analyzed and also installed [1–3]. The geographical and climatic condition affects the performance of the hybrid system. Therefore, a backup is necessary in the case when one of the energy sources is not available or the power generated by the hybrid system is not capable of fulfilling the power demand. To ensure the continuous power supply and to take care of intermittent nature of energy systems, diesel generator can be integrated to overcome the problem [4, 5]. Economic analysis and cost optimization of such system have been done to ensure the existence of the system [6, 7]. The additions of diesel generator are advantageous over the pure renewable energy system but also have some major problems such as diesel generator needs fossil fuel and

References

[1]  R. Muhida, A. Mostavan, W. Sujatmiko, M. Park, and K. Matsuura, “10 Years operation of a PV-micro-hydro hybrid system in Taratak, Indonesia,” Solar Energy Materials and Solar Cells, vol. 67, no. 1–4, pp. 621–627, 2001.
[2]  E. M. Nfah and J. M. Ngundam, “Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon,” Renewable Energy, vol. 34, no. 6, pp. 1445–1450, 2009.
[3]  J. Kenfack, F. P. Neirac, T. T. Tatietse, D. Mayer, M. Fogue, and A. Lejeune, “Microhydro-PV-hybrid system: sizing a small hydro-PV-hybrid system for rural electrification in developing countries,” Renewable Energy, vol. 34, no. 10, pp. 2259–2263, 2009.
[4]  D. Saheb-Koussa, M. Haddadi, and M. Belhamel, “Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria,” Applied Energy, vol. 86, no. 7-8, pp. 1024–1030, 2009.
[5]  J. L. Bernal-Agustín and R. Dufo-López, “Simulation and optimization of stand-alone hybrid renewable energy systems,” Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 2111–2118, 2009.
[6]  R. Dufo-López, J. L. Bernal-Agustín, J. M. Yusta-Loyo et al., “Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage,” Applied Energy, vol. 88, no. 11, pp. 4033–4041, 2011.
[7]  M. S. Ngan and C. W. Tan, “Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 634–647, 2012.
[8]  P. C. Ghosh, B. Emonts, and D. Stolten, “Comparison of hydrogen storage with diesel-generator system in a PV-WEC hybrid system,” Solar Energy, vol. 75, no. 3, pp. 187–198, 2003.
[9]  M. Z. Ibrahim, R. Zailan, M. Ismail, and A. M. Muzathik, “Pre-feasibility study of hybrid hydrogen based energy systems for coastal residential applications,” Energy Research Journal, vol. 1, pp. 12–21, 2010.
[10]  B. Panahandeh, J. Bard, A. Outzourhit, and D. Zejli, “Simulation of PV-wind-hybrid systems combined with hydrogen storage for rural electrification,” International Journal of Hydrogen Energy, vol. 36, no. 6, pp. 4185–4197, 2011.
[11]  K.-S. Jeong, W.-Y. Lee, and C.-S. Kim, “Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics,” Journal of Power Sources, vol. 145, no. 2, pp. 319–326, 2005.
[12]  C. Wang and M. H. Nehrir, “Power management of a stand-alone wind/photovoltaic/fuel cell energy system,” IEEE Transactions on Energy Conversion, vol. 23, no. 3, pp. 957–967, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413