全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Slip Factors and Couple Stresses for Stagnation Point Flow over a Moving Plate

DOI: 10.1155/2013/727826

Full-Text   Cite this paper   Add to My Lib

Abstract:

An investigation is presented for the two-dimensional and axisymmetric stagnation flows of a couple stress fluids intrude on a moving plate under partial slip conditions. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The important physical parameters of skin friction coefficients of the fluid are also obtained. The homotopy analysis method (HAM) is employed to obtain the analytical solution of the problem. Also, the convergence of the solutions is established by plotting graphs of convergence control parameter. The impacts of couple stresses and slip conditions on the flow and temperature of the fluid have been observed. The numerical comparison for the considered fluid is compared with previous solutions as special case. 1. Introduction The fluids exhibiting a boundary slip are important in industrial applications, for example, the polishing of artificial heart valves, rarefied fluid problems, and flow on multiple interfaces. There are many cases where no slip condition is replaced with Navier’s partial slip condition. Partial slip condition on solid boundary occurs in many problems such as oscillatory flow channel, transient flow, some coated surfaces, some rough or porous surfaces, and heat transfer on moving plate. The flow on a moving plate is termed as a basic content for convection processes. The partial slip condition on a moving plate was considered by Wang [1]; the steady, laminar, axis-symmetric flow of a Newtonian fluid due to a stretching sheet with partial slip was studied by Ariel [2], Nadeem et al. [3] investigated steady state rotating and MHD flow of a third grade fluid past a rigid plate with slip; flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip are considered by Sahoo [4], and Jamil and Khan [5] considered the slip effects on fractional viscoelastic fluids; the steady boundary layer flow past a moving horizontal flat plate with a slip effect is studied by Kumaran and Pop [6]. The theory of couple stresses, introduced by Stokes [7], explain the rheological behavior of various complex non-Newtonian fluids with body stresses and body couples which cannot be illustrated by the classical theory of continuum mechanics. Due to the rotational interaction of particles, the force-stress tensor is not symmetric and flow behaviors of such fluids are not similar to the Newtonian ones. It draws the researcher’s attention with the growing applications of such fluids in engineering, biomedical, and chemical industries. The

References

[1]  C. Y. Wang, “Stagnation slip flow and heat transfer on a moving plate,” Chemical Engineering Science, vol. 61, no. 23, pp. 7668–7672, 2006.
[2]  P. D. Ariel, “Axisymmetric flow due to a stretching sheet with partial slip,” Computers and Mathematics with Applications, vol. 54, no. 7-8, pp. 1169–1183, 2007.
[3]  S. Nadeem, T. Hayat, S. Abbasbandy, and M. Ali, “Effects of partial slip on a fourth-grade fluid with variable viscosity: an analytic solution,” Nonlinear Analysis: Real World Applications, vol. 11, no. 2, pp. 856–868, 2010.
[4]  B. Sahoo, “Flow and heat transfer of a non-Newtonian fluid past a stretching sheet with partial slip,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 3, pp. 602–615, 2010.
[5]  M. Jamil and N. A. Khan, “Slip effects on fractional viscoelastic fluids,” International Journal of Differential Equations, vol. 2011, Article ID 193813, 19 pages, 2011.
[6]  V. Kumaran and I. Pop, “Nearly parallel blasius flow with slip,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 12, pp. 4619–4624, 2011.
[7]  V. K. Stokes, “Couple stresses in fluids,” Physics of Fluids, vol. 9, no. 9, pp. 1709–1715, 1966.
[8]  S. Nadeem and S. Akram, “Peristaltic flow of a couple stress fluid under the effect of induced magnetic field in an asymmetric channel,” Archive of Applied Mechanics, vol. 81, no. 1, pp. 97–109, 2011.
[9]  N. A. Khan, A. Mahmood, and A. Ara, “Approximate solution of couple stress fluid with expanding or contracting porous channel,” Engineering Computations, vol. 30, no. 3, pp. 399–408, 2013.
[10]  J. V. Ramana Murthy and G. Nagaraju, “Flow of a couple stress fluid generated by a circular cylinder subjected to longitudinal and torsional oscillations,” Contemporary Engineering Sciences, vol. 2, no. 10, pp. 451–461, 2009.
[11]  T. Hayat, M. Mustafa, Z. Iqbal, and A. Alsaedi, “Stagnation-point flow of couple stress fluid with melting heat transfer,” Applied Mathematics and Mechanics, vol. 34, no. 2, pp. 167–176, 2013.
[12]  M. Devakar and T. K. V. Iyengar, “Run up flow of a couple stress fluid between parallel plates,” Nonlinear Analysis: Modelling and Control, vol. 15, no. 1, pp. 29–37, 2010.
[13]  S. Liang and D. J. Jeffrey, “Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 12, pp. 4057–4064, 2009.
[14]  M. Sajid, T. Hayat, and S. Asghar, “Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt,” Nonlinear Dynamics, vol. 50, no. 1-2, pp. 27–35, 2007.
[15]  S. Abbasbandy, “The application of homotopy analysis method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 360, no. 1, pp. 109–113, 2006.
[16]  F. M. Allan and M. I. Syam, “On the analytic solutions of the nonhomogeneous Blasius problem,” Journal of Computational and Applied Mathematics, vol. 182, no. 2, pp. 362–371, 2005.
[17]  T. Hayat and T. Javed, “On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet,” Physics Letters A, vol. 370, no. 3-4, pp. 243–250, 2007.
[18]  T. Hayat and M. Sajid, “Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 50, no. 1-2, pp. 75–84, 2007.
[19]  S. Abbasbandy, “Homotopy analysis method for the Kawahara equation,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 307–312, 2010.
[20]  N. A. Khan, M. Jamil, and K. A. Nadeem, “Effects of slip factors on unsteady stagnation point flow and heat transfer towards a stretching sheet: an analytical study,” Heat Transfer Research, vol. 43, no. 8, pp. 779–794, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133