全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Simulation and Investigation of System Parameters of Sonochemical Process

DOI: 10.1155/2013/362682

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the effects of various parameters that significantly affect the cavitation. In this study, three types of liquid mediums with different physicochemical properties were considered as the cavitation medium. The effects of various operating parameters such as temperature, pressure, initial bubble radius, dissolved gas content and so forth, were investigated in detail. The simulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production of oxidizing species. The formation of ?OH radical and H2O2 is considered as the results of main effects of sonochemical process. Simulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives higher sonochemical effects. This is due to the bubble with small radius can undergo many acoustic cycles before reaching its critical radius when it collapses and produces higher temperature and pressure inside the bubble. On the other hand, due to the low surface tension and high vapor pressure, organic solvents are not suitable for sonochemical reactions. 1. Introduction The sonochemistry concept is a well-established technique, and now it is considered as one of the most popular advanced oxidation processes. In the last few decades, sonochemical process became one of the most popular techniques for synthesis of catalysts as well as different types of materials [4–7], degradation of pollutants [8–12], synthesis of biodiesel [13, 14], and so forth. Numerous literatures on sonochemistry have already been published [15–18] which reported the various beneficial effects of sonochemistry. The principal phenomenon behind all of these effects is the cavitation. Cavitation is nothing but nucleation, growth, and implosive collapse of a bubble. Cavitation occurs through the formation of bubbles or cavities present in liquid medium. Each cavitating bubble contains gas or vapor or a mixture of gas-vapor. When bubble contains only gas, the expansion of bubble is mainly by diffusion, pressure reduction, or by rise in temperature. However, there are several parameters which are directly involved in transient cavitation. Transient cavitation is nothing but the growth of bubbles extensively over time scales of the order of the acoustic cycle and then undergoes an implosive/energetic collapse resulting in either fragmentation, decaying oscillation, or a repeat performance [19]. Cavitation can also be the result of the enlargement of cavities that are already present in bulk liquid. Sometimes cavitation bubbles are

References

[1]  J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, New York, NY, USA, 1954.
[2]  E. U. Condon and H. Odishaw, Handbook of Physics, McGraw-Hill, New York, NY, USA, 1958.
[3]  R. C. Reid, J. M. Prausnitz, and B. E. Poling, Properties of Gases and Liquids, McGraw-Hill, New York, NY, USA, 1987.
[4]  H. Xu, B. W. Zeiger, and K. S. Suslick, “Sonochemical synthesis of nanomaterials,” Chemical Society Reviews, vol. 42, pp. 2555–2567, 2013.
[5]  J. H. Bang and K. S. Suslick, “Applications of ultrasound to the synthesis of nanostructured materials,” Advanced Materials, vol. 22, no. 10, pp. 1039–1059, 2010.
[6]  S. Kanmuri and V. S. Moholkar, “Mechanistic aspects of sonochemical copolymerization of butyl acrylate and methyl methacrylate,” Polymer, vol. 51, no. 14, pp. 3249–3261, 2010.
[7]  M. Sivakumar, A. Gedanken, W. Zhong et al., “Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5,” Journal of Magnetism and Magnetic Materials, vol. 268, no. 1-2, pp. 95–104, 2004.
[8]  P. R. Gogate and G. S. Bhosale, “Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters,” Chemical Engineering and Processing: Process Intensificationdoi, 2013.
[9]  S. Chakma and V. S. Moholkar, “Physical mechanism of sono-fenton process,” AIChE Journal, 2013.
[10]  J. B. Bhasarkar, S. Chakma, and V. S. Moholkar, “Mechanistic features of oxidative desulfurization using sono-fenton-peracetic acid (Ultrasound/Fe2+-CH3COOH-H2O2) system,” Industrial & Engineering Chemistry Research, vol. 52, no. 26, pp. 9038–9047, 2013.
[11]  P. Braeutigam, M. Franke, R. J. Schneider, A. Lehmann, A. Stolle, and B. Ondruschka, “Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic-Acoustic-Cavitation (HAC),” Water Research, vol. 46, no. 7, pp. 2469–2477, 2012.
[12]  J. Madhavan, P. S. S. Kumar, S. Anandan, M. Zhou, F. Grieser, and M. Ashokkumar, “Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment,” Chemosphere, vol. 80, no. 7, pp. 747–752, 2010.
[13]  P. A. Parkar, H. A. Choudhary, and V. S. Moholkar, “Mechanistic and kinetic investigations in ultrasound assisted acid catalyzed biodiesel synthesis,” Chemical Engineering Journal, vol. 187, pp. 248–260, 2012.
[14]  H. A. Choudhury, S. Chakma, and V. S. Moholkar, “Mechanistic insight into sonochemical biodiesel synthesis using heterogeneous base catalyst,” Ultrasonics Sonochemistry, 2013.
[15]  J. Rooze, E. V. Rebrov, J. C. Schouten, and J. T. F. Keurentjes, “Dissolved gas and ultrasonic cavitation—a review,” Ultrasonics Sonochemistry, vol. 20, pp. 1–11, 2013.
[16]  K. D. Bhatte, S.-I. Fujita, M. Arai, A. B. Pandit, and B. M. Bhanage, “Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide,” Ultrasonics Sonochemistry, vol. 18, no. 1, pp. 54–58, 2011.
[17]  K. S. Suslick, M. M. Mdleleni, and J. T. Ries, “Chemistry induced by hydrodynamic cavitation,” Journal of the American Chemical Society, vol. 119, no. 39, pp. 9303–9304, 1997.
[18]  J. S. Krishnan, P. Dwivedi, and V. S. Moholkar, “Numerical investigation into the chemistry induced by hydrodynamic cavitation,” Industrial and Engineering Chemistry Research, vol. 45, no. 4, pp. 1493–1504, 2006.
[19]  T. G. Leight, The Acoustic Bubble, Academic Press, London, UK, 1995.
[20]  Y. T. Shah, A. B. Pandit, and V. S. Moholkar, Cavitation Reaction Engineering, Kluwer Academic/Plenum, New York, NY, USA, 1999.
[21]  K. S. Suslick, “Sonochemistry,” Science, vol. 247, no. 4949, pp. 1439–1445, 1990.
[22]  T. Sivasankar and V. S. Moholkar, “Mechanistic approach to intensification of sonochemical degradation of phenol,” Chemical Engineering Journal, vol. 149, no. 1–3, pp. 57–69, 2009.
[23]  R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery,” Catalysis Today, vol. 53, no. 1, pp. 51–59, 1999.
[24]  R. E. Apfel, “Acoustic cavitation inception,” Ultrasonics, vol. 22, no. 4, pp. 167–173, 1984.
[25]  C. Gong and D. P. Hart, “Ultrasound induced cavitation and sonochemical yields,” Journal of the Acoustical Society of America, vol. 104, no. 5, pp. 2675–2682, 1998.
[26]  K. S. Suslick, Y. Didenko, M. M. Fang et al., “Acoustic cavitation and its chemical consequences,” Philosophical Transactions of the Royal Society A, vol. 357, no. 1751, pp. 335–353, 1999.
[27]  P. R. Gogate and A. B. Pandit, “A review of imperative technologies for wastewater treatment II: hybrid methods,” Advances in Environmental Research, vol. 8, no. 3-4, pp. 553–597, 2004.
[28]  R. Toegel, B. Gompf, R. Pecha, and D. Lohse, “Does water vapor prevent upscaling sonoluminescence?” Physical Review Letters, vol. 85, no. 15, pp. 3165–3168, 2000.
[29]  B. D. Storey and A. J. Szeri, “Water vapour, sonoluminescence and sono chemistry,” Proceedings of the Royal Society A, vol. 456, no. 1999, pp. 1685–1709, 2000.
[30]  J. B. Keller and M. Miksis, “Bubble oscillations of large amplitude,” Journal of the Acoustical Society of America, vol. 68, no. 2, pp. 628–633, 1980.
[31]  R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Lightfoot, Transport Phenomena, John Wiley & Sons, New York, NY, USA, 2nd edition, 2001.
[32]  W. H. Press, S. A. Teukolsky, B. P. Flannery, and W. T. Vetterling, Numerical Recipes, Cambridge University Press, New York, NY, USA, 2nd edition, 1992.
[33]  G. Eriksson, “Thermodynamic studies of high temperature equilibria—XII: SOLGAMIX, a computer program for calculation of equilibrium composition in multiphase systems,” Chemica scripta, vol. 8, pp. 100–103, 1975.
[34]  S. Grossmann, S. Hilgenfeldt, M. Zomack, and D. Lohse, “Sound radiation of 3-MHz driven gas bubbles,” Journal of the Acoustical Society of America, vol. 102, no. 2, pp. 1223–1230, 1997.
[35]  V. S. Moholkar and M. M. C. G. Warmoeskerken, “Integrated approach to optimization of an ultrasonic processor,” AIChE Journal, vol. 49, no. 11, pp. 2918–2932, 2003.
[36]  FACTSAGE, http://www.factsage.com/.
[37]  P. Kumar and V. S. Moholkar, “Numerical assessment of hydrodynamic cavitation reactors using organic solvents,” Industrial and Engineering Chemistry Research, vol. 50, no. 8, pp. 4769–4775, 2011.
[38]  S. Chakma and V. S. Moholkar, “Mechanistic features of ultrasonic desorption of aromatic pollutants,” Chemical Engineering Journal, vol. 175, no. 1, pp. 356–367, 2011.
[39]  A. Prosperetti and A. Lezzi, “Bubble Dynamics in a compressible liquid. part 1. first order theory,” Journal of Fluid Mechanics, vol. 168, pp. 457–478, 1986.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133