全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reduced Precision Redundancy for Satellite Telecommand Receiver Module on FPGA

DOI: 10.1155/2013/453872

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel and highly efficient design of a software defined radiation tolerant baseband module for a LEO satellite telecommand receiver using FPGA is presented. FPGAs in space are subject to single event upsets (SEUs) due to high radiation environment. Traditionally, triple modular redundancy (TMR) is used for mitigating Single Event Upsets (SEUs). The drawback of using TMR is that it consumes a lot of hardware resources and requires more power. Reduced precision redundancy (RPR) can be a viable alternative of TMR in digital systems for arithmetic operations. This paper uses the combination of RPR and TMR for mitigating SEUs. The designed module consumes less resources on FPGA and has bit error rate (BER) identical to theoretical results, apart from degradation due to implementation losses. An improved Costas loop and timing recovery algorithm are implemented for achieving carrier recovery and bit synchronization. The hybrid approach mitigates SEUs while consuming 26% less resources than a customary TMR protected receiver. 1. Introduction Reconfigurability and adaptability are one of the most desirable features of modern space technology. FPGA provides this flexibility along with good performance. They have become an integral part of satellite systems for over a decade. Their high computational capacity combined with small size and light weight makes them a preferable choice over other digital systems. The ability to reconfigure FPGA with an updated functionality reduces the hardware requirement in space craft [1]. However, FPGAs face some severe problems in the space environment. The high energy particles in space may interact with memory cells within an integrated circuit and can change their logic state [2]. This alteration may disrupt the operation of a digital system defined by memory cells. FPGAs contain large array of memory cells which makes them more susceptible to single event upsets (SEUs). In order to operate properly in space, some mitigation techniques need to be applied in FPGAs. Traditionally, triple modular redundancy (TMR) has been used for this purpose. The drawback of using TMR is that it consumes a lot of hardware resources and requires more power [3]. Thus, there has been a constant effort to find an alternative to the TMR technique. Shim and Shanbhag [4] introduced reduced precision redundancy (RPR) as part of a power-reduction technique for ASIC-based systems; Snodgrass [5] demonstrated variation of RPR on FPGA to limit high magnitude errors of arithmetic operations in high radiation environment. Pratt et al. [6] have presented the

References

[1]  M. Caffrey, “A space-based reconfigurable radio,” in Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA '02), pp. 49–53, Las Vegas, Nev, USA, June 2002.
[2]  P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 583–602, 2003.
[3]  C. Carmichael, “Triple module redundancy design techniques for Virtex FPGAs,” Tech. Rep. XAPP197 (v1.0), Xilinx Corporation, 2001.
[4]  B. Shim and N. R. Shanbhag, “Reduced precision redundancy for low-power digital filtering,” in Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 148–152, Pacific Grove, Calif, USA, November 2001.
[5]  J. Snodgrass, Low-power fault tolerance for spacecraft FPGA-based numerical computing [Ph.D. thesis], Department of Electrical and Computer Engineering, Naval Postgraduate School, Monterey, Calif, USA, 2006.
[6]  B. Pratt, M. Fuller, M. Rice, and M. Wirthlin, “Reduced-precision redundancy for reliable FPGA communications systems in high-radiation environments,” IEEE Transaction on Aerospace and Electronic Systems, vol. 49, no. 1, pp. 369–380, 2013.
[7]  J. A. Maya, N. A. Casco, P. A. Roncagliolo, and J. G. García, “A high data rate BPSK receiver implementation in FPGA for high dynamics applications,” in Proceedings of the 7th Southern Conference on Programmable Logic (SPL '11), pp. 233–238, Cordoba, Spain, April 2011.
[8]  Z. Zhao, Y. Shen, and Y. Bai, “Design and implementation of the BPSK modem based on software defined radio,” in Proceedings of the 1st International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC '11), pp. 780–784, Los Alamitos, Calif, USA, October 2011.
[9]  L. Si and T. Cheng, “Efficient FPGA implementation of spread spectrum transceiver,” in Proceedings of the 9th International Conference on Advanced Communication Technology (ICACT '07), pp. 464–467, Gangwon-Do, Republic of Korea, February 2007.
[10]  L. Zhi, J. Zhou, L. Qing, and Z. Xiaoyang, “Efficient carrier recovery for high-order QAM,” in Proceedings of the International Conference on Consumer Electronics (ICCE '07), pp. 1–2, Las Vegas, Nev, USA, January 2007.
[11]  B. Shamla and K. G. G. Devi, “Design and implementation of costas loop for BPSK demodulator,” in Proceedings of the Annual IEEE India Conference (INDICON '12), pp. 785–789, Kochi, India, December 2012.
[12]  M. A. Sullivan, Reduced precision redundancy applied to arithmetic operations in field programmable gate arrays for satellite control and sensor systems [M.S. thesis], Department of Mechanical and Astronautical Engineering and Department of Electrical and Computer Engineering, Naval Postgraduate School, Monterey, Calif, USA, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133