全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Promoter Methylation of SFRP3 Is Frequent in Hepatocellular Carcinoma

DOI: 10.1155/2014/351863

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oncogenic activation of the Wnt/β-catenin signaling pathway is common in human cancers. The secreted frizzled-related proteins (SFRPs) function as negative regulators of Wnt signaling and have important implications in carcinogenesis. Because there have been no reports about the role of SFRP3 in hepatocellular carcinoma (HCC), we investigated the level of methylation and transcription of SFRP3. Four HCC cell lines, 60 HCCs, 23 cirrhosis livers, 37 chronic hepatitis livers, and 30 control livers were prescreened for SFRP3 promoter methylation by methylation-specific polymerase chain reaction (MS-PCR) and bisulfite sequencing. SFRP3 promoter methylation was observed in 100%, 60%, 39.1%, 16.2%, and 0% in HCC cell lines, primary HCCs, cirrhosis livers, chronic hepatitis livers, and control livers, respectively. Demethylation treatment with 5-aza-2′-deoxycytidine in HCC cells restored or increased the SFRP3 mRNA expression. We next used quantitative MS-PCR (QMSP) to analyze the methylation level of SFRP3 in 60 HCCs and their corresponding nontumor tissues. Methylation of SFRP3 promoter region in HCCs increased significantly compared with control tissues. There is a positive correlation between promoter hypermethylation and SFRP3 mRNA downregulation. Our data suggest that promoter hypermethylation of SFRP3 is a common event in HCCs and plays an important role in regulation of SFRP3 mRNA expression. 1. Introduction Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and accounts for as many as 1 million deaths annually worldwide [1–5]. The major risk factors include chronic hepatitis B virus (HBV) infection, chronic hepatitis C virus (HCV) infection, environmental carcinogens such as aflatoxin B1 (AFB1), alcoholic cirrhosis, and inherited genetic disorder such as hemochromatosis, Wilson disease, and tyrosinemia. Among them, HBV, HCV, and AFB1 are responsible for approximately 80% of all HCC [1, 2]. Research on molecular genetics and pathogenesis of HCC has become a hot spot in cancer study because of its scientific merits and its clinical importance. Despite rapid expansion of information obtained from these researchers, the molecular mechanism of hepatocarcinogenesis and molecular genetics of HCC remain elusive. The Wnt/β-catenin signaling pathway plays an important role in liver physiology and pathology by regulating a variety of crucial cellular events, including differentiation, proliferation, and survival [6–8]. The Wnt/β-catenin pathway can be activated through mutations in CTNNB1 (encoding β-catenin), AXIN1, and AXIN2 [6,

References

[1]  F. X. Bosch, J. Ribes, R. Cléries, and M. Díaz, “Epidemiology of hepatocellular carcinoma,” Clinics in Liver Disease, vol. 9, no. 2, pp. 191–211, 2005.
[2]  F. X. Bosch, J. Ribes, and J. Borràs, “Epidemiology of primary liver cancer,” Seminars in Liver Disease, vol. 19, no. 3, pp. 271–285, 1999.
[3]  A. S. Befeler and A. M. Di Bisceglie, “Hepatocellular carcinoma: diagnosis and treatment,” Gastroenterology, vol. 122, no. 6, pp. 1609–1619, 2002.
[4]  H. B. El-Serag, “Hepatocellular carcinoma: recent trends in the United States,” Gastroenterology, vol. 127, pp. S27–S34, 2004.
[5]  H. B. El-Serag and A. C. Mason, “Rising incidence of hepatocellular carcinoma in the United States,” The New England Journal of Medicine, vol. 340, no. 10, pp. 745–750, 1999.
[6]  M. D. Thompson and S. P. S. Monga, “WNT/β-catenin signaling in liver health and disease,” Hepatology, vol. 45, no. 5, pp. 1298–1305, 2007.
[7]  T. Chiba, Y.-W. Zheng, K. Kita et al., “Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation,” Gastroenterology, vol. 133, no. 3, pp. 937–950, 2007.
[8]  G. Zeng, U. Apte, B. Cieply, S. Singh, and S. P. S. Monga, “siRNA-mediated β-catenin knockdown in human hepatoma cells results in decreased growth and survival,” Neoplasia, vol. 9, no. 11, pp. 951–959, 2007.
[9]  J. Behari, “The Wnt/β-catenin signaling pathway in liver biology and disease,” Expert Review of Gastroenterology and Hepatology, vol. 4, no. 6, pp. 745–756, 2010.
[10]  K. M. Cadigan and R. Nusse, “Wnt signaling: a common theme in animal development,” Genes and Development, vol. 11, no. 24, pp. 3286–3305, 1997.
[11]  C. Y. Logan, J. R. Miller, M. J. Ferkowicz, and D. R. McClay, “Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo,” Development, vol. 126, no. 2, pp. 345–357, 1999.
[12]  P. Polakis, “Wnt signaling and cancer,” Genes and Development, vol. 14, no. 15, pp. 1837–1851, 2000.
[13]  C. Yost, M. Torres, J. R. Miller, E. Huang, D. Kimelman, and R. T. Moon, “The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3,” Genes and Development, vol. 10, no. 12, pp. 1443–1454, 1996.
[14]  J. Behrens, J. P. von Kries, M. Kühl et al., “Functional interaction of β-catenin with the transcription factor LEF- 1,” Nature, vol. 382, no. 6592, pp. 638–642, 1996.
[15]  J. Cui, X. Zhou, Y. Liu, Z. Tang, and M. Romeih, “Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes,” Journal of Gastroenterology and Hepatology, vol. 18, no. 3, pp. 280–287, 2003.
[16]  A. de La Coste, B. Romagnolo, P. Billuart et al., “Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8847–8851, 1998.
[17]  P. A. Farazi and R. A. DePinho, “Hepatocellular carcinoma pathogenesis: from genes to environment,” Nature Reviews Cancer, vol. 6, no. 9, pp. 674–687, 2006.
[18]  Y.-L. Shih, R.-Y. Shyu, C.-B. Hsieh et al., “Promoter methylation of the secreted frizzled-related protein 1 gene SFRP1 is frequent in hepatocellular carcinoma,” Cancer, vol. 107, no. 3, pp. 579–590, 2006.
[19]  G. M. Caldwell, C. Jones, K. Gensberg et al., “The Wnt antagonist sFRP1 in colorectal tumorigenesis,” Cancer Research, vol. 64, no. 3, pp. 883–888, 2004.
[20]  D. Sarrió, G. Moreno-Bueno, D. Hardisson et al., “Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability,” International Journal of Cancer, vol. 106, no. 2, pp. 208–215, 2003.
[21]  S. Satoh, Y. Daigo, Y. Furukawa et al., “AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1,” Nature Genetics, vol. 24, no. 3, pp. 245–250, 2000.
[22]  H. Suzuki, E. Gabrielson, W. Chen et al., “A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer,” Nature Genetics, vol. 31, no. 2, pp. 141–149, 2002.
[23]  J. G. Herman and S. B. Baylin, “Gene silencing in cancer in association with promoter hypermethylation,” The New England Journal of Medicine, vol. 349, no. 21, pp. 2042–2054, 2003.
[24]  J. G. Herman, A. Merlo, L. Mao et al., “Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers,” Cancer Research, vol. 55, no. 20, pp. 4525–4530, 1995.
[25]  M. Esteller, A. Sparks, M. Toyota et al., “Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer,” Cancer Research, vol. 60, no. 16, pp. 4366–4371, 2000.
[26]  J. Yu, H. Y. Zhang, Z. Z. Ma, W. Lu, Y. F. Wang, and J. D. Zhu, “Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis,” Cell Research, vol. 13, no. 5, pp. 319–333, 2003.
[27]  B. Yang, M. Guo, J. G. Herman, and D. P. Clark, “Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma,” American Journal of Pathology, vol. 163, no. 3, pp. 1101–1107, 2003.
[28]  U. Schagdarsurengin, L. Wilkens, D. Steinemann et al., “Frequent epigenetic inactivation of the RASSF1A gene in hepatocellular carcinoma,” Oncogene, vol. 22, no. 12, pp. 1866–1871, 2003.
[29]  H. Suzuki, D. N. Watkins, K.-W. Jair et al., “Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer,” Nature Genetics, vol. 36, no. 4, pp. 417–422, 2004.
[30]  P. W. Finch, X. He, M. J. Kelley, et al., “Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 6770–6775, 1997.
[31]  E. J. Ekstr?m, V. Sherwood, and T. Andersson, “Methylation and loss of secreted frizzled-related protein 3 enhances melanoma cell migration and invasion,” PLoS ONE, vol. 6, no. 4, Article ID e18674, 2011.
[32]  X. Zi, Y. Guo, A. R. Simoneau et al., “Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness,” Cancer Research, vol. 65, no. 21, pp. 9762–9770, 2005.
[33]  H. Hirata, Y. Hinoda, K. Ueno, S. Majid, S. Saini, and R. Dahiya, “Role of secreted frizzled-related protein 3 in human renal cell carcinoma,” Cancer Research, vol. 70, no. 5, pp. 1896–1905, 2010.
[34]  Y.-L. Shih, C.-B. Hsieh, H.-C. Lai et al., “SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway,” International Journal of Cancer, vol. 121, no. 5, pp. 1028–1035, 2007.
[35]  J. G. Herman, J. R. Graff, S. My?h?nen, B. D. Nelkin, and S. B. Baylin, “Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9821–9826, 1996.
[36]  S. Ogino, T. Kawasaki, M. Brahmandam et al., “Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis,” Journal of Molecular Diagnostics, vol. 8, no. 2, pp. 209–217, 2006.
[37]  H.-C. Lai, Y.-W. Lin, R.-L. Huang et al., “Quantitative DNA methylation analysis detects cervical intraepithelial neoplasms type 3 and worse,” Cancer, vol. 116, no. 18, pp. 4266–4274, 2010.
[38]  W. B. Coleman and A. G. Rivenbark, “Quantitative DNA methylation analysis: the promise of high-throughput epigenomic diagnostic testing in human neoplastic disease,” Journal of Molecular Diagnostics, vol. 8, no. 2, pp. 152–156, 2006.
[39]  K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001.
[40]  Y. Kondo, Y. Kanai, M. Sakamoto, M. Mizokami, R. Ueda, and S. Hirohashi, “Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis—a comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma,” Hepatology, vol. 32, no. 5, pp. 970–979, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133