全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CD14 Gene Variants and Their Importance for Childhood Croup, Atopy, and Asthma

DOI: 10.1155/2013/434920

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. The CD14 gene has an important role in the detection of inflammatory provoking pathogens and in the ensuing signaling of the innate immune response. We assessed the role of CD14 C-159T, G-1359T in the expression of asthma, croup, and allergy in Canadian school children of ages 6 to 14 years. Methods. Children attending schools in a rural community participated in a cross-sectional survey of respiratory health. Following consent, we conducted clinical assessments to collect buccal swabs for genotyping and perform skin prick testing (SPT) to determine atopic status. Genotyping and SPT results were available for 533 and 499 children, respectively. Separate multivariable analyses that included both polymorphisms were conducted for each phenotype. Results. The prevalence of asthma, allergy, and croup was 18.6%, 22.4%, and 6.6%, respectively. Children with the T/T variant of CD14 G-1359T were more likely to have physician diagnosed asthma (26.8%). Children with C/C variant of CD14 C-159T had a significantly lower prevalence of croup (2.6%). Haplotype analyses of the two CD14 polymorphisms showed that individuals with the T|T haplotype combination were significantly more likely to have asthma ( ). Conclusions. In this study, CD14 variants are important for the expression of croup and asthma but not atopy. 1. Introduction Respiratory conditions such as asthma and croup are leading causes of hospitalization and emergency room use by children [1–3]. Asthma and allergy are common childhood conditions, and both genetic and environmental factors influence their expression [1]. The inflammatory airway responses associated with these conditions result from the stimulation by external agents of the TLR4 inflammatory pathway through genes such as CD14 located on the surface of immune response cells in the lungs as well as other organs. Both TLR4 and CD14 genes are codependent with MD2 in their roles as signalers of other mediators in the innate response to pathogens [1]. Unlike TLR4 A896G, a functional polymorphism in the Toll signaling pathway, whose primary response on the cell membrane is to the presence of lipopolysaccharide (LPS) from gram-negative bacteria, the CD14 gene appears to have a broader response to pathogen recognition [4–6]. It has a central role in innate immunity, as it can interact with several ligands, including LPS from gram-negative bacteria, components from gram-positive bacteria, fungi, and viruses [5]. CD14 has also been suspected to be a crucial link between innate and adaptive immunity in response to environmental antigens [3].

References

[1]  R. J. Rosychuk, D. C. Voaklander, T. P. Klassen, A. Senthilselvan, T. J. Marrie, and B. H. Rowe, “Asthma presentations by children to emergency departments in a Canadian province: a population-based study,” Pediatric Pulmonology, vol. 45, no. 10, pp. 985–992, 2010.
[2]  R. J. Rosychuk, T. P. Klassen, D. Metes, D. C. Voaklander, A. Senthilselvan, and B. H. Rowe, “Croup presentations to emergency departments in Alberta, Canada: a large population-based study,” Pediatric Pulmonology, vol. 45, no. 1, pp. 83–91, 2010.
[3]  R. Zoorob, M. Sidani, and J. Murray, “Croup: an overview,” American Family Physician, vol. 83, no. 9, pp. 1067–1073, 2011.
[4]  R. Tesse, R. C. Pandey, and M. Kabesch, “Genetic variations in toll-like receptor pathway genes influence asthma and atopy,” Allergy, vol. 66, no. 3, pp. 307–316, 2011.
[5]  R. Arroyo-Espliguero, P. Avanzas, S. Jeffery, and J. C. Kaski, “CD14 and toll-like receptor 4: a link between infection and acute coronary events?” Heart, vol. 90, no. 9, pp. 983–988, 2004.
[6]  M. A. Dobrovolskaia and S. N. Vogel, “Toll receptors, CD14, and macrophage activation and deactivation by LPS,” Microbes and Infection, vol. 4, no. 9, pp. 903–914, 2002.
[7]  T. Nicolai and E. V. Mutius, “Risk of asthma in children with a history of croup,” Acta Paediatrica, vol. 85, no. 11, pp. 1295–1299, 1996.
[8]  H. P. Van Bever, M. H. Wieringa, J. J. Weyler, V. J. Nelen, M. Fortuin, and P. A. Vermeire, “Croup and recurrent croup: their association with asthma and allergy: an epidemiological study on 5–8-year-old children,” European Journal of Pediatrics, vol. 158, no. 3, pp. 253–257, 1999.
[9]  Z. Arslan, F. E. ?ipe, S. ?zmen, M. Kondolot, I. E. Piskin, and A. Y?ney, “Evaluation of allergic sensitization and gastroesophageal reflux disease in children with recurrent croup,” Pediatrics International, vol. 51, no. 5, pp. 661–665, 2009.
[10]  H. Pruikkonen, T. Dunder, M. Renko, T. Pokka, and M. Uhari, “Risk factors for croup in children with recurrent respiratory infections: a case-control study,” Paediatric and Perinatal Epidemiology, vol. 23, no. 2, pp. 153–159, 2009.
[11]  J. A. Castro-Rodríguez, C. J. Holberg, W. J. Morgan et al., “Relation of two different subtypes of croup before age three to wheezing, atopy, and pulmonary function during childhood: a prospective study,” Pediatrics, vol. 107, no. 3, pp. 512–518, 2001.
[12]  S. E. Sobol and S. Zapata, “Epiglottitis and croup,” Otolaryngologic Clinics of North America, vol. 41, no. 3, pp. 551–566, 2008.
[13]  M. Baldini, I. C. Lohman, M. Halonen, R. P. Erickson, P. G. Holt, and F. D. Martinez, “A polymorphism in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E,” American Journal of Respiratory Cell and Molecular Biology, vol. 20, no. 5, pp. 976–983, 1999.
[14]  D. Bu?ková, L. I. Hollá, M. Schüller, V. Znojil, and J. Vácha, “Two CD14 promoter polymorphisms and atopic phenotypes in Czech patients with IgE-mediated allergy,” Allergy, vol. 58, no. 10, pp. 1023–1026, 2003.
[15]  L. A. M. Smit, S. I. M. Bongers, H. J. T. Ruven et al., “Atopy and new-onset asthma in young Danish farmers and CD14, TLR2, and TLR4 genetic polymorphisms: a nested case-control study,” Clinical and Experimental Allergy, vol. 37, no. 11, pp. 1602–1608, 2007.
[16]  G. H. Koppelman, N. E. Reijmerink, O. C. Stine et al., “Association of a promoter polymorphism of the CD14 gene and atopy,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 4, pp. 965–969, 2001.
[17]  A. R. O'Donnell, B. G. Toelle, G. B. Marks et al., “Age specific relationship between CD14 and atopy in a cohort assessed from age 8 to 25 years,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 5, pp. 615–622, 2004.
[18]  T. D. LeVan, S. von Essen, D. J. Romberger et al., “Polymorphisms in the CD14 gene associated with pulmonary function in farmers,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 7, pp. 773–779, 2005.
[19]  A. Simpson, S. L. John, F. Jury et al., “Endotoxin exposure, CD14, and allergic disease: an interaction between genes and the environment,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 4, pp. 386–392, 2006.
[20]  M. Kabesch, K. Hasemann, V. Schickinger et al., “A promoter polymorphism in the CD14 gene is associated with elevated levels of soluble CD14 but not with IgE or atopic diseases,” Allergy, vol. 59, no. 5, pp. 520–525, 2004.
[21]  C. Sengler, A. Haider, C. Sommerfeld et al., “Evaluation of the CD14-C-159-T polymorphism in the German Multicenter Allergy Study cohort,” Clinical and Experimental Allergy, vol. 33, no. 2, pp. 166–169, 2003.
[22]  P.-S. Gao, X.-Q. Mao, M. Baldini et al., “Serum total IgE levels and CD14 on chromosome 5q31,” Clinical Genetics, vol. 56, no. 2, pp. 164–165, 1999.
[23]  C.-Y. Tan, Y.-L. Chen, L. S.-H. Wu, C.-F. Liu, W.-T. Chang, and J.-Y. Wang, “Association of CD14 promoter polymorphisms and soluble CD14 levels in mite allergen sensitization of children in Taiwan,” Journal of Human Genetics, vol. 51, no. 1, pp. 59–67, 2006.
[24]  A. Heinzmann, H. Dietrich, S.-P. Jerkic, T. Kurz, and K. A. Deichmann, “Promoter polymorphisms of the CD14 gene are not associated with bronchial asthma in Caucasian children,” European Journal of Immunogenetics, vol. 30, no. 5, pp. 345–348, 2003.
[25]  C. Sa?kesen, C. Karaaslan, O. Keskin et al., “The effect of polymorphisms at the CD14 promoter and the TLR4 gene on asthma phenotypes in Turkish children with asthma,” Allergy, vol. 60, no. 12, pp. 1485–1492, 2005.
[26]  C. Ober and E. E. Thompson, “Rethinking genetic models of asthma: the role of environmental modifiers,” Current Opinion in Immunology, vol. 17, no. 6, pp. 670–678, 2005.
[27]  C. Ober and S. Hoffjan, “Asthma genetics 2006: the long and winding road to gene discovery,” Genes and Immunity, vol. 7, no. 2, pp. 95–100, 2006.
[28]  D. Vercelli, M. Baldini, and F. D. Martinez, “The monocyte/IgE connection: may polymorphisms in the CD14 gene teach us about IgE regulation?” International Archives of Allergy and Immunology, vol. 124, no. 1–3, pp. 20–24, 2001.
[29]  B. G. Ferris, “Epidemiology standardization project,” American Review of Respiratory Disease, vol. 118, supplement 6, pp. 1–120, 1978.
[30]  Y. Chen, D. C. Rennie, and J. A. Dosman, “Influence of environmental tobacco smoke on asthma in nonallergic and allergic children,” Epidemiology, vol. 7, no. 5, pp. 536–539, 1996.
[31]  A. H?st, S. Andrae, S. Charkin et al., “Allergy testing in children: why, who, when and how?” Allergy, vol. 58, no. 7, pp. 559–569, 2003.
[32]  B. Richards, J. Skoletsky, A. P. Shuber et al., “Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs,” Human Molecular Genetics, vol. 2, no. 2, pp. 159–163, 1993.
[33]  R Development Core Team, “R: a language and environment for statistical computing,” R Foundation for Statistical Computing, Vienna, Austria, 2006, http://www.r-project.org/.
[34]  A. S. Foulkes, Applied Statistical Genetics with R: For Population-Based Association Studies, Springer, New York, NY, USA, 2009.
[35]  M. Kurowski, B. Majkowska-Wojciechowska, A. Wardzyńska, and M. L. Kowalski, “Associations of allergic sensitization and clinical phenotypes with innate immune response genes polymorphisms are modified by house dust mite allergen exposure,” Archives of Medical Science, vol. 7, no. 6, pp. 1029–1036, 2011.
[36]  F. D. Martinez, “CD14, endotoxin, and asthma risk: actions and interactions,” Proceedings of the American Thoracic Society, vol. 4, no. 3, pp. 221–225, 2007.
[37]  I. A. Yang, S. Savarimuthu, S. T. Kim, J. W. Holloway, S. C. Bell, and K. M. Fong, “Gene-environmental interaction in asthma,” Current Opinion in Allergy and Clinical Immunology, vol. 7, no. 1, pp. 75–82, 2007.
[38]  M. I. Asher, U. Keil, H. R. Anderson et al., “International study of asthma and allergies in childhood (ISAAC): rationale and methods,” European Respiratory Journal, vol. 8, no. 3, pp. 483–491, 1995.
[39]  J. K. Peat, R. H. van den Berg, W. F. Green, C. M. Mellis, S. R. Leeder, and A. J. Woolcock, “Changing prevalence of asthma in Australian children,” British Medical Journal, vol. 308, no. 6944, pp. 1591–1596, 1994.
[40]  N. Jabbour, N. P. Parker, M. Finkelstein, T. A. Lander, and J. D. Sidman, “Incidence of operative endoscopy findings in recurrent croup,” Padiatric Otolaryngology, vol. 144, no. 4, pp. 596–601, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413