全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biofuel Expansion, Fertilizer Use, and GHG Emissions: Unintended Consequences of Mitigation Policies

DOI: 10.1155/2013/708604

Full-Text   Cite this paper   Add to My Lib

Abstract:

Increased biofuel production has been associated with direct and indirect land-use change, changes in land management practices, and increased application of fertilizers and pesticides. This has resulted in negative environmental consequences in terms of increased carbon emissions, water quality, pollution, and sediment loads, which may offset the pursued environmental benefits of biofuels. This study analyzes two distinct policies aimed at mitigating the negative environmental impacts of increased agricultural production due to biofuel expansion. The first scenario is a fertilizer tax, which results in an increase in the US nitrogen fertilizer price, and the second is a policy-driven reversion of US cropland into forestland (afforestation). Results show that taxing fertilizer reduces US production of nitrogen-intensive crops, but this is partially offset by higher fertilizer use in other countries responding to higher crop prices. In the afforestation scenario, crop production shifts from high-yielding land in the United States to low-yielding land in the rest of the world. Important policy implications are that domestic policy changes implemented by a large producer like the United States can have fairly significant impacts on the aggregate world commodity markets. Also, the law of unintended consequences results in an inadvertent increase in global greenhouse gas emissions. 1. Introduction World agriculture has been significantly impacted by a number of events that have occurred in the past five to ten years. Arguably the most prominent is the dramatic global expansion of biofuels, especially in the United States and Brazil, driven by mandates, federal and state incentives, and trade barriers [1]. Energy prices have also increased to record levels, with the world crude oil price exceeding $130 per barrel in July of 2008 and currently hovering between $101 and $105 per barrel.1 These higher energy prices have a significant impact on biofuel expansion (Hayes et al., 2009) as biofuels became economically attractive even without subsidies [2]. Additionally, several major policy initiatives relating to climate change in general and biofuels in particular were initiated in a number of countries. These include such policies as the American Clean Energy and Security Act of 2009 (ACES) (H.R.2454) and the Energy Independence and Security Act of 2007 (EISA) in the United States (Public Law 110–140) and the 2009 Energy and Climate Change Package in the European Union [3, 4], which have also contributed to increases in ethanol and biodiesel production.2 While

References

[1]  P. C. Westhoff, The Economics of Food: How Feeding and Fueling the Planet Affects Food Prices, Pearson Education, Upper Saddle River, NJ, USA, 2010.
[2]  B. A. Babcock, “The impact of US biofuel policies on agricultural price levels and volatility,” Tech. Rep. 35, International Centre for Trade and Sustainable Development, 2011.
[3]  U.S. Department of Agriculture (USDA), “The impacts of the American clean energy and security act of 2009 on U.S. agriculture,” Office of the Chief Economist, ERS-USDA, December 2009, http://www.usda.gov/oce/newsroom/archives/releases/2009files/ImpactsofHR2454.pdf.
[4]  U.S. Department of Agriculture (USDA), “EU-27. Biofuels Annual,” 2010, http://gain.fas.usda.gov/Recent%20GAIN%20Publications/General%20Report_The%20Hague_Netherlands-Germany%20EU-27_6-15-2009.pdf.
[5]  T. Searchinger, R. Heimlich, R. A. Houghton et al., “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, pp. 1238–1240, 2008.
[6]  J. Fargione, J. Hill, D. Tilman, S. Polasky, and P. Hawthorne, “Land clearing and the biofuel carbon debt,” Science, vol. 319, no. 5867, pp. 1235–1238, 2008.
[7]  T. W. Hertel, A. A. Golub, A. D. Jones, M. O'Hare, R. J. Plevin, and D. M. Kammen, “Effects of US Maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses,” BioScience, vol. 60, no. 3, pp. 223–231, 2010.
[8]  J. Dumortier, D. J. Hayes, M. Carriquiry et al., “Sensitivity of carbon emission estimates from indirect land-use change,” Applied Economic Perspectives and Policy, vol. 33, no. 3, pp. 428–448, 2011.
[9]  California Air Resources Board (CARB), “Initial statement of reasons: proposed regulation to implement the low carbon fuel standard,” Staff Report: Volume 1, California Environmental Protection Agency Air Resources Board, Sacramento, Calif, USA, 2009.
[10]  J. E. Fargione, R. J. Plevin, and J. D. Hill, “The ecological impact of biofuels,” Annual Review of Ecology, Evolution, and Systematics, vol. 41, pp. 351–377, 2010.
[11]  L. E. Revell, G. E. Bodeker, P. E. Huck, and B. E. Williamson, “Impacts of the production and consumption of biofuels on stratospheric ozone,” Geophysical Research Letters, vol. 39, no. 10, Article ID L10804, 2012.
[12]  J. Dumortier, D. J. Hayes, M. Carriquiry et al., “The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions,” Environmental Research Letters, vol. 7, no. 2, Article ID 024023, 2012.
[13]  A. Elobeid and S. Tokgoz, “Removing distortions in the U.S. ethanol market: what does it imply for the United States and Brazil?” American Journal of Agricultural Economics, vol. 90, no. 4, pp. 918–932, 2008.
[14]  F. Rosas, “The worlds fertilizer model—world NPK model,” Tech. Rep. 11-WP 520, Center for Agricultural and Rural Development, Iowa State University, 2011.
[15]  J. Dumortier, “The effects of uncertainty under a cap-and-trade policy on afforestation in the United States,” Environmental Research Letters, vol. 8, no. 4, Article ID 044020, 11 pages, 2013.
[16]  B. A. Babcock, “The effects of uncertainty on optimal Nitrogen applications,” Review of Agricultural Economics, vol. 14, pp. 271–280, 1992.
[17]  G. Sheriff, “Efficient waste? Why farmers over-apply nutrients and the implications for policy design,” Review of Agricultural Economics, vol. 27, no. 4, pp. 542–557, 2005.
[18]  U.S. Department of Agriculture, Economic Research Service (USDA-ERS), “Fertilizer Use and Price,” Washington, DC, USA, 2013, http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx#.Um9dEEoq4lp.
[19]  World Bank, World DataBank, Global Economic Monitor Commodities, 2012, http://databank.worldbank.org/data/home.aspx.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133