Much research has estimated induced land use changes (ILUCs) and emissions for first generation biofuels. Relatively little has provided estimates for the second generation biofuels. This paper estimates ILUC emissions for the first and second generation biofuels. Estimated ILUC emissions are uncertain not only because their associated land use changes are uncertain, but also because of uncertainty in the land use emission factors (EFs). This paper also examines uncertainties related to these factors. The results suggest that converting crop residues to biofuel has no significant ILUC emissions, but that is not the case for dedicated energy crops. Use of dedicated energy crops transfers managed natural land and marginal land (cropland-pasture) to crop production. Producing biogasoline from miscanthus generates the lowest land requirement among alterative pathways. The largest land requirement is associated with switchgrass. The difference is due largely to the assumed yields of switchgrass and miscanthus. The three major conclusions from uncertainty in emissions analyses are (1) inclusion or exclusion of cropland-pasture makes a huge difference; (2) changes in soil carbon sequestration due to changes in land cover vegetation play an important role; and (3) there is wide divergence among the emission factor sources, especially for dedicated crop conversion to ethanol. 1. Introduction The land use consequences of global biofuel programs and their contributions to GHG emissions have been the focal point of many debates and research studies in recent years. Research studies in this field usually estimate ILUC emissions in two phases. They first estimate ILUCs due to biofuel production using either partial or general equilibrium models. Then they apply land use emission factors (EFs), which measure vegetation and soil carbon fluxes and are obtained from biophysical models, to calculate the ILUC emissions given the estimated ILUCs. Both of these phases are subject to uncertainties. Several papers examined major uncertainties related to the estimates for ILUCs and their geographical distributions. Wicke et al. [1] reviewed major studies in this area and highlighted deficiencies of economic models used to assess the ILUCs due to biofuels and their corresponding uncertainties. However, most of these studies focused on the land use emissions due to first generation biofuels such as corn ethanol, sugarcane ethanol, and biodiesel. Few attempts have been made to estimate these emissions for second generation biofuels which convert cellulosic materials into liquid
References
[1]
B. Wicke, P. Verweij, H. Meijl, D. Vuuren, and A. Faaij, “Indirect land use changes: review of existing models and strategies for mitigation,” Biofuels, vol. 3, no. 1, pp. 87–100, 2012.
[2]
F. Taheripour, T. Hertel, W. Tyner, J. Beckman, and D. Birur, “Biofuels and their by-products: global economic and environmental implications,” Biomass and Bioenergy, vol. 34, no. 3, pp. 278–289, 2010.
[3]
T. Hertel, W. Tyner, and D. Birur, “The global impacts of biofuel mandates,” The Energy Journal, no. 1, pp. 75–100, 312010.
[4]
T. W. Hertel, A. A. Golub, A. D. Jones, M. O'Hare, R. J. Plevin, and D. M. Kammen, “Effects of US Maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses,” BioScience, vol. 60, no. 3, pp. 223–231, 2010.
[5]
F. Taheripour, T. W. Hertel, and W. E. Tyner, “Implications of biofuels mandates for the global livestock industry: a computable general equilibrium analysis,” Agricultural Economics, vol. 42, no. 3, pp. 325–342, 2011.
[6]
W. Tyner, F. Taheripour, Q. Zhuang, D. Birur, and U. Baldos, Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis, Argonne National Laboratory, Chicago, Ill, USA, 2010.
[7]
A. Golub and T. Hertel, “Modeling land-use change impacts of biofuels in the GTAP-BIO framework,” Climate Change Economics, vol. 3, no. 3, 2012.
[8]
National Academy of Sciences, National Academy of Engineering, and National Research Council, Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts, National Academies Press, 2009.
[9]
F. Taheripour, D. Birur, T. Hertel, and W. Tyner, Introducing Liquid Biofuel into the GTAP Database, GTAP Research Memorandum no. 11, Center for Global Trade Analysis, Purdue University, West Lafayette, Ind, USA, 2007.
[10]
F. Taheripour, W. Tyner, and M. Wang, Global Land Use Changes due to the U.S. Cellulosic Biofuel Program Simulated with the GTAP Model, Argonne National Laboratory, Chicago, Ill, USA, 2011.
[11]
M. Avetisyan, U. Baldos, and T. Hertel, Development of the GTAP Version 7 Land Use Data Base in GTAP, Research Memorandum no. 19, Purdue University, West Lafayette, Ind, USA, 2010.
[12]
F. Taheripour, Z. Qianlai, W. Tyner, and X. Lu, “Biofuels, cropland expansion, and the extensive margin,” Applied Science, vol. 3, pp. 14–38, 2012.
[13]
J. Fiegel, Development of viable corn stover market: impacts on corn and soybean markets [M.S. thesis of Science], Purdue University, 2012.
[14]
T. Searchinger, R. Heimlich, R. A. Houghton et al., “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, pp. 1238–1240, 2008.
[15]
P. Al-Riffai, B. Dimaranan, and D. Laborde, Global Trade and Environmental Impact Study of the EU Biofuels Mandate, International Food Policy Research Institute, Washington, DC, USA, 2010.
[16]
Q. Zhuang, F. Taheripour, W. Tyner, and T. Hertel, “Estimating changes of global vegetation and soil carbon storage due to biofuel production,” in Proceedings of the 12th Annual Conference on Global Economic Analysis, Santiago, Chile, June 2009.
[17]
R. Plevin, H. Gibbs, J. Duffy, S. Yui, and S. Yeh, Agro-Ecological Zone Emission Factor Model, California Air Resources Board, Sacramento, Calif, USA, 2011.
[18]
S. Mueller, J. Dunn, and M. Wang, Carbon Calculator for Land Use Change from Biofuels Production: Users' Manual and Technical Documentation, Energy Systems Division, Argonne National Laboratory, Chicago, Ill, USA, 2012.
[19]
M. Wang, J. Han, J. B. Dunn, H. Cai, and A. Elgowainy, “Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use,” Environmental Research Letter 7, 2012.
[20]
S. Yeh, H. Gibbs, S. Mueller, R. Nelson, and D. O'Connor, Low Carbon Fuel Standard (LCFS) Indirect Land Use Change Expert Workgroup: A Report to the California Air Resources Board, California Air Resources Board, Sacramento, Calif, USA, 2010.
[21]
K. Anderson-Teixeira, S. Davis, M. Masters, and E. Delucia, “Changes in soil organic carbon under biofuel crops,” GCB Bioenergy, vol. 1, no. 1, pp. 75–96, 2009.
[22]
H. Y. Kwon and R. J. M. Hudson, “Quantifying management-driven changes in organic matter turnover in an agricultural soil: an inverse modeling approach using historical data and a surrogate CENTURY-type model,” Soil Biology and Biochemistry, vol. 42, no. 12, pp. 2241–2253, 2010.
[23]
P. C. van Deusen and L. S. Heath, “Weighted analysis methods for mapped plot forest inventory data: tables, regressions, maps and graphs,” Forest Ecology and Management, vol. 260, no. 9, pp. 1607–1612, 2010.