全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

How Sleep Activates Epileptic Networks?

DOI: 10.1155/2013/425697

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system. 1. Introduction The robust activation of epileptic interictal and ictal activity in NREM sleep is well known and valid for almost all types of epilepsies. Different aspects of relationship between sleep and epilepsy were addressed in several excellent reviews [1–4]. During development of the last years, several new aspects have been elaborated contributing to understand better the activation of interictal and ictal epileptic phenomena by sleep. The most important issues among them are as follows. (1) Sleep physiology has revealed neuronal networks governing wake-sleep alternations and cyclic changes during night sleep. Nowadays we see better the interrelationship between the sleep-wake circuitry and its multifold relationship with the different epileptic networks. (2) In the microstructure of sleep certain dynamic key points have shown to be associated with epileptic activation identified within the system of cyclic alternating pattern (CAP) correlating with reactive slow wave events. (3) One of the most important among recent discoveries is the exploration of the high frequency range of EEG and the recognition the relationship of this phenomenon with epilepsy and slow wave sleep. (4) Recognition of

References

[1]  D. S. Dinner and H. O. Lüders, Epilepsy and Sleep, Academic Press, San Diego, Calif, USA, 2001.
[2]  M. Méndez and R. A. Radtke, “Interactions between sleep and epilepsy,” Journal of Clinical Neurophysiology, vol. 18, no. 2, pp. 106–127, 2001.
[3]  C. W. Bazil, “Sleep and epilepsy,” Seminars in Neurology, vol. 22, no. 3, pp. 321–327, 2002.
[4]  N. Foldvary-Schaefer and M. Grigg-Damberger, “Sleep and epilepsy: what we know, don't know, and need to know,” Journal of Clinical Neurophysiology, vol. 23, no. 1, pp. 4–20, 2006.
[5]  C. von Economo, “Sleep as a problem of localization,” Journal of Nervous and Mental Disease, vol. 71, no. 3, pp. 1–5, 1930.
[6]  C. B. Saper, T. C. Chou, and T. E. Scammell, “The sleep switch: hypothalamic control of sleep and wakefulness,” Trends in Neurosciences, vol. 24, no. 12, pp. 726–731, 2001.
[7]  G. Moruzzi and H. W. Magoun, “Brain stem reticular formation and activation of the EEG,” Electroencephalography and Clinical Neurophysiology, vol. 1, no. 1–4, pp. 455–473, 1949.
[8]  R. T. Marrocco, E. A. Witte, and M. C. Davidson, “Arousal systems,” Current Opinion in Neurobiology, vol. 4, no. 2, pp. 166–170, 1994.
[9]  B. E. Jones, “Arousal systems,” Frontiers in Bioscience, vol. 8, pp. s438–s451, 2003.
[10]  T. W. Robbins, “Arousal systems and attentional processes,” Biological Psychology, vol. 45, no. 1–3, pp. 57–71, 1997.
[11]  M. G. Terzano, L. Parrino, A. Smerieri et al., “CAP and arousals are involved in the homeostatic and ultradian sleep processes,” Journal of Sleep Research, vol. 14, no. 4, pp. 359–368, 2005.
[12]  P. Luppi, “Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep,” World Journal of Biological Psychiatry, vol. 11, supplement 1, pp. 4–8, 2010.
[13]  M. Steriade, M. Deschênes, L. Domich, and C. Mulle, “Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami,” Journal of Neurophysiology, vol. 54, no. 6, pp. 1473–1497, 1985.
[14]  M. Steriade, D. Contreras, R. C. Dossi, and A. Nu?ez, “The slow (<1?Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks,” Journal of Neuroscience, vol. 13, no. 8, pp. 3284–3299, 1993.
[15]  P. Achermann and A. A. Borbély, “Low-frequency (<1?Hz) oscillations in the human sleep electroencephalogram,” Neuroscience, vol. 81, no. 1, pp. 213–222, 1997.
[16]  F. Amzica and M. Steriade, “Short- and long-range neuronal synchronization of the slow (<1?Hz) cortical oscillation,” Journal of Neurophysiology, vol. 73, no. 1, pp. 20–38, 1995.
[17]  I. Timofeev and M. Steriade, “Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats,” Journal of Neurophysiology, vol. 76, no. 6, pp. 4152–4168, 1996.
[18]  V. Itier and D. Bertrand, “Mutations of the neuronal nicotinic acetylcholine receptors and their association with ADNFLE,” Neurophysiologie Clinique, vol. 32, no. 2, pp. 99–107, 2002.
[19]  M. Steriade, “Basic mechanisms of sleep generation,” Neurology, vol. 42, no. 7, supplement 6, pp. 9–17, 1992.
[20]  M. Steriade, “The corticothalamic system in sleep,” Frontiers in Bioscience, vol. 8, pp. d878–d899, 2003.
[21]  R. Csercsa, B. Dombovári, D. Fabó et al., “Laminar analysis of slow wave activity in humans,” Brain, vol. 133, no. 9, pp. 2814–2829, 2010.
[22]  P. Halász, “The microstructure of sleep,” in Advances in Clinical Neurophysiology Supplements to Clinical Neurophysiology, M. Hallet, L. H. Phillips II, D. L. Schomer, and J. M. Massey, Eds., vol. 57, Elsevier, New York, NY, USA, 2004.
[23]  M. G. Terzano, D. Mancia, M. R. Salati, G. Costani, A. Decembrino, and L. Parrino, “The cyclic alternating pattern as a physiologic component of normal NREM sleep,” Sleep, vol. 8, no. 2, pp. 137–145, 1985.
[24]  P. Halász, M. Terzano, L. Parrino, and R. Bódizs, “The nature of arousal in sleep,” Journal of Sleep Research, vol. 13, no. 1, pp. 1–23, 2004.
[25]  J. P. Schieber, A. Muzet, and P. J. Ferriere, “Phases of spontaneous transitory activation during normal sleep in humans,” Archives des Sciences Physiologiques, vol. 25, no. 4, pp. 443–465, 1971.
[26]  R. Ferri, O. Bruni, S. Miano, and M. G. Terzano, “Topographic mapping of the spectral components of the cyclic alternating pattern (CAP),” Sleep Medicine, vol. 6, no. 1, pp. 29–36, 2005.
[27]  M. G. Terzano, L. Parrino, M. Boselli, A. Smerieri, and M. C. Spaggiari, “CAP components and EEG synchronization in the first 3 sleep cycles,” Clinical Neurophysiology, vol. 111, no. 2, pp. 283–290, 2000.
[28]  A. A. Borbély, “A two process model of sleep regulation,” Human Neurobiology, vol. 1, no. 3, pp. 195–204, 1982.
[29]  P. Halász, “K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment,” Sleep Medicine Reviews, vol. 9, no. 5, pp. 391–412, 2005.
[30]  L. A. Finelli, A. A. Borbély, and P. Achermann, “Functional topography of the human nonREM sleep electroencephalogram,” European Journal of Neuroscience, vol. 13, no. 12, pp. 2282–2290, 2001.
[31]  C. Cajochen, R. Foy, and D. Dijk, “Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans,” Sleep Research Online, vol. 2, no. 3, pp. 65–69, 1999.
[32]  R. Huber, M. F. Ghilardi, M. Massimini, and G. Tononi, “Local sleep and learning,” Nature, vol. 430, no. 6995, pp. 78–81, 2004.
[33]  H. Kattler, D. J. Dijk, and A. A. Borbély, “Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans,” Journal of Sleep Research, vol. 3, no. 3, pp. 159–164, 1994.
[34]  R. Huber, M. F. Ghilardi, M. Massimini et al., “Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity,” Nature Neuroscience, vol. 9, no. 9, pp. 1169–1176, 2006.
[35]  R. Stickgold, L. James, and J. A. Hobson, “Visual discrimination learning requires sleep after training,” Nature Neuroscience, vol. 3, no. 12, pp. 1237–1238, 2000.
[36]  H. Miyamoto, H. Katagiri, and T. Hensch, “Experience-dependent slow-wave sleep development,” Nature Neuroscience, vol. 6, no. 6, pp. 553–554, 2003.
[37]  M. Münch, V. Knoblauch, K. Blatter et al., “The frontal predominance in human EEG delta activity after sleep loss decreases with age,” European Journal of Neuroscience, vol. 20, no. 5, pp. 1402–1410, 2004.
[38]  I. M. Colrain, K. E. Crowley, C. L. Nicholas, M. Padilla, and F. C. Baker, “The impact of alcoholism on sleep evoked Δ frequency responses,” Biological Psychiatry, vol. 66, no. 2, pp. 177–184, 2009.
[39]  F. J. Puertas, A. Tembl, J. M. Cordero, H. Azzi, M. F. Romero, and M. A. Merino, “Changes in cerebral perfusion studied by PECT in patients with severe obstructive apnea/hypopnea syndrome,” Journal of Sleep Research, vol. 13, supplement 1, p. 592, 2004, Proceedings of the 24th European Sleep Research Society Congress.
[40]  P. J. Hauri, “Cognitive deficits in insomnia patients,” Acta Neurologica Belgica, vol. 97, no. 2, pp. 113–117, 1997.
[41]  S. Boufidis, K. Rikou, A. Karlovassiou, E. Vlahoyanni, S. I. Balyannis, and M. H. Kosmoidis, “Impact of insomnia on working memory,” Journal of Sleep Research, vol. 13, supplement 1, p. 91, 2004, Proceedings of the 24th European Sleep Medicine Research Society Congress.
[42]  M.-M. Mesulam, “Large-scale neurocognitive networks and distributed processing for attention, language, and memory,” Annals of Neurology, vol. 28, no. 5, pp. 597–613, 1990.
[43]  S. Momjian, M. Seghier, M. Seeck, and C. M. Michel, “Mapping of the neuronal networks of human cortical brain functions,” Advances and Technical Standards in Neurosurgery, vol. 28, pp. 91–142, 2003.
[44]  H. Mizuhara, L. Wang, K. Kobayashi, and Y. Yamaguchi, “A long-range cortical network emerging with theta oscillation in a mental task,” NeuroReport, vol. 15, no. 8, pp. 1233–1238, 2004.
[45]  B. Horwitz and A. R. Braun, “Brain network interactions in auditory, visual and linguistic processing,” Brain and Language, vol. 89, no. 2, pp. 377–384, 2004.
[46]  P. Vuilleumier and G. Pourtois, “Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging,” Neuropsychologia, vol. 45, no. 1, pp. 174–194, 2007.
[47]  M.-M. Mesulam, “From sensation to cognition,” Brain, vol. 121, part 6, pp. 1013–1052, 1998.
[48]  D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” Journal of Physiology, vol. 195, no. 1, pp. 215–243, 1968.
[49]  W. Singer, “Distributed processing and temporal codes in neuronal networks,” Cognitive Neurodynamics, vol. 3, no. 3, pp. 189–196, 2009.
[50]  C. Barba, G. Barbati, L. Minotti, D. Hoffmann, and P. Kahane, “Ictal clinical and scalp-EEG findings differentiating temporal lobe epilepsies from temporal “plus” epilepsies,” Brain, vol. 130, part 7, pp. 1957–1967, 2007.
[51]  P. Kahane and E. Landré, “The epileptogenic zone,” Neurochirurgie, vol. 54, no. 3, pp. 265–271, 2008.
[52]  P. Halász, “The concept of epileptic networks. Part 2,” Ideggyogy Sz, vol. 63, no. 11-12, pp. 377–384, 2010.
[53]  G. Buzsaki, Rhythms of the Brain, Oxford University Press, Oxford, UK, 2006.
[54]  S. Vanhatalo, J. Voipio, and K. Kaila, “Full-band EEG (FbEEG): a new standard for clinical electroencephalography,” Clinical EEG and Neuroscience, vol. 36, no. 4, pp. 311–317, 2005.
[55]  A. Bragin, C. L. Wilson, J. Almajano, I. Mody, and J. Engel Jr., “High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis,” Epilepsia, vol. 45, no. 9, pp. 1017–1023, 2004.
[56]  R. J. Staba, C. L. Wilson, A. Bragin, I. Fried, and J. Engel Jr., “Quantitative analysis of high-frequency oscillations (80–500?Hz) recorded in human epileptic hippocampus and entorhinal cortex,” Journal of Neurophysiology, vol. 88, no. 4, pp. 1743–1752, 2002.
[57]  J. Engel Jr., A. Bragin, R. Staba, and I. Mody, “High-frequency oscillations: what is normal and what is not?” Epilepsia, vol. 50, no. 4, pp. 598–604, 2009.
[58]  G. Buzsáki, Z. Horváth, R. Urioste, J. Hetke, and K. Wise, “High-frequency network oscillation in the hippocampus,” Science, vol. 256, no. 5059, pp. 1025–1027, 1992.
[59]  A. Bragin, J. Engel Jr., C. L. Wilson, I. Fried, and G. Buzsáki, “High-frequency oscillations in human brain,” Hippocampus, vol. 9, no. 2, pp. 137–142, 1999.
[60]  E. Urrestarazu, R. Chander, F. Dubeau, and J. Gotman, “Interictal high-frequency oscillations (10–500?Hz) in the intracerebral EEG of epileptic patients,” Brain, vol. 130, part 9, pp. 2354–2366, 2007.
[61]  Z. Clemens, M. M?lle, L. Eross, P. Barsi, P. Halász, and J. Born, “Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans,” Brain, vol. 130, part 11, pp. 2868–2878, 2007.
[62]  F. Grenier, I. Timofeev, and M. Steriade, “Focal synchronization of ripples (80–200?Hz) in neocortex and their neuronal correlates,” Journal of Neurophysiology, vol. 86, no. 4, pp. 1884–1898, 2001.
[63]  R. J. Staba, C. L. Wilson, A. Bragin, D. Jhung, I. Fried, and J. Engel Jr., “High-frequency oscillations recorded in human medial temporal lobe during sleep,” Annals of Neurology, vol. 56, no. 1, pp. 108–115, 2004.
[64]  G. A. Worrell, L. Parish, S. D. Cranstoun, R. Jonas, G. Baltuch, and B. Litt, “High-frequency oscillations and seizure generation in neocortical epilepsy,” Brain, vol. 127, part 7, pp. 1496–1506, 2004.
[65]  F. Grenier, I. Timofeev, and M. Steriade, “Focal synchronization of ripples (80–200?Hz) in neocortex and their neuronal correlates,” Journal of Neurophysiology, vol. 86, no. 4, pp. 1884–1898, 2001.
[66]  Y. Aghakhani, A. P. Bagshaw, C. G. Bénar et al., “fMRI activation during spike and wave discharges in idiopathic generalized epilepsy,” Brain, vol. 127, part 5, pp. 1127–1144, 2004.
[67]  Y. Aghakhani, D. Kinay, J. Gotman et al., “The role of periventricular nodular heterotopia in epileptogenesis,” Brain, vol. 128, part 3, pp. 641–651, 2005.
[68]  Y. Aghakhani, E. Kobayashi, A. P. Bagshaw et al., “Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes,” Clinical Neurophysiology, vol. 117, no. 1, pp. 177–191, 2006.
[69]  J. Gotman, “Epileptic networks studied with EEG-fMRI,” Epilepsia, vol. 49, supplement 3, pp. 42–51, 2008.
[70]  E. Kobayashi, A. P. Bagshaw, A. Jansen et al., “Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses,” Neurology, vol. 64, no. 7, pp. 1263–1266, 2005.
[71]  E. Kobayashi, A. P. Bagshaw, C. Grova, F. Dubeau, and J. Gotman, “Negative BOLD responses to epileptic spikes,” Human Brain Mapping, vol. 27, no. 6, pp. 488–497, 2006.
[72]  J. Jacobs, P. Levan, C. Chtillon, A. Olivier, F. Dubeau, and J. Gotman, “High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type,” Brain, vol. 132, part 4, no. 4, pp. 1022–1037, 2009.
[73]  J. M. Yu, L. Tyvaert, P. Levan et al., “EEG spectral changes underlying BOLD responses contralateral to spikes in patients with focal epilepsy,” Epilepsia, vol. 50, no. 7, pp. 1804–1809, 2009.
[74]  F. Fahoum, R. Lopes, F. Pittau, F. Dubeau, and J. Gotman, “Widespread epileptic networks in focal epilepsies: EEG-fMRI study,” Epilepsia, vol. 53, no. 9, pp. 1618–1627, 2012.
[75]  H. Meeren, G. van Luijtelaar, F. L. da Silva, and A. Coenen, “Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory,” Archives of Neurology, vol. 62, no. 3, pp. 371–376, 2005.
[76]  A. P. Aldenkamp, J. Arends, S. Verspeek, and M. Berting, “The cognitive impact of epileptiform EEG-discharges; relationship with type of cognitive task,” Child Neuropsychology, vol. 10, no. 4, pp. 297–305, 2004.
[77]  H. J. Meencke and D. Janz, “Neuropathological findings in primary generalized epilepsy: a study of eight cases,” Epilepsia, vol. 25, no. 1, pp. 8–21, 1984.
[78]  F. G. Woermann, S. M. Sisodiya, S. L. Free, and J. S. Duncan, “Quantitative MRI in patients with idiopathic generalized epilepsy. Evidence of widespread cerebral structural changes,” Brain, vol. 121, part 9, pp. 1661–1667, 1998.
[79]  E. Niedermeyer, The Generalized Epilepsies: A Clinical Electroencephalographic Study, C. C. Thomas, Springfield, Ill, USA, 1972.
[80]  P. Passouant, “Absence or Petit Mal. Clinical and physiopathological problems,” Revista Espanola de Oto-Neuro-Oftalmologia y Neurocirugia, vol. 29, no. 167, pp. 11–28, 1971.
[81]  P. Gloor, G. Testa, and A. Guberman, “Brain-stem and cortical mechanisms in an animal model of generalized corticoreticular epilepsy,” Transactions of the American Neurological Association, vol. 98, pp. 203–205, 1973.
[82]  C. Li, H. Jasper, and L. Henderson Jr., “The effect of arousal mechanisms on various forms of abnormality in the electroencephalogram,” Electroencephalography and Clinical Neurophysiology, vol. 4, no. 4, pp. 513–526, 1952.
[83]  P. Rajna and C. Lona, “Sensory stimulation for inhibition of epileptic seizures,” Epilepsia, vol. 30, no. 2, pp. 168–174, 1989.
[84]  P. Halász, “Generalized epilepsy with spike-wave paroxysms as an epileptic disorder of the function of sleep promotion,” Acta Physiologica Academiae Scientiarum Hungaricae, vol. 57, no. 1, pp. 51–86, 1981.
[85]  P. Halász, “Sleep, arousal and electroclinical manifestations of generalized epilepsy with spike wave pattern,” Epilepsy Research, Supplement, vol. 2, pp. 43–48, 1991.
[86]  P. Halász and é. Dévényi, “Petit mal absence in night-sleep with special reference to transitional sleep and REM periods,” Acta Medica Academiae Scientiarum Hungaricae, vol. 31, no. 1-2, pp. 31–45, 1974.
[87]  M. N. Shouse, A. King, J. Langer et al., “Basic mechanisms underlying seizure-prone and seizure-resistent sleep and awakening states in feline kindled and penicillin epilepsy,” in Kindling 4, J. A. Wada, Ed., vol. 37 of Advances in Behavioral Biology, pp. 313–327, 1991.
[88]  A. M. L. Coenen, W. H. I. M. Drinkenburg, B. W. M. M. Peeters, J. M. H. Vossen, and E. L. J. M. van Luijtelaar, “Absence epilepsy and the level of vigilance in rats of the WAG/Rij strain,” Neuroscience and Biobehavioral Reviews, vol. 15, no. 2, pp. 259–263, 1991.
[89]  E. Niedermeyer, “über ausl?sende Mechanismen von Kramfpotentialen bei centrenphaler Epilepsie,” Der Nervenarzt, vol. 38, pp. 72–74, 1967.
[90]  P. Halász, Role of the non-specific phasic activation in sleep regulation and in the pathomechanism of generalized epilepsy with spike-wave pattern [Ph.D. thesis], 1982.
[91]  M. G. Terzano, L. Parrino, S. Anelli, and P. Halasz, “Modulation of generalized spike-and-wave discharges during sleep by cyclic alternating pattern,” Epilepsia, vol. 30, no. 6, pp. 772–781, 1989.
[92]  G. L. Gigli, E. Calia, M. G. Marciani et al., “Sleep microstructure and EEG epileptiform activity in patients with juvenile myoclonic epilepsy,” Epilepsia, vol. 33, no. 5, pp. 799–804, 1992.
[93]  J. R. Tenney, T. Q. Duong, J. A. King, R. Ludwig, and C. F. Ferris, “Corticothalamic modulation during absence seizures in rats: a functional MRI assessment,” Epilepsia, vol. 44, no. 9, pp. 1133–1140, 2003.
[94]  A. Nehlig, M. Valenti, A. Thiriaux, E. Hirsch, C. Marescaux, and I. J. Namer, “Ictal and interictal perfusion variations measured by SISCOM analysis in typical childhood absence seizures,” Epileptic Disorders, vol. 6, no. 4, pp. 247–253, 2004.
[95]  K. Hamandi, A. Salek-Haddadi, H. Laufs et al., “EEG-fMRI of idiopathic and secondarily generalized epilepsies,” NeuroImage, vol. 31, no. 4, pp. 1700–1710, 2006.
[96]  P. Halász, J. Filakovszky, A. Vargha, and G. Bagdy, “Effect of sleep deprivation on spike-wave discharges in idiopathic generalised epilepsy: a 4 × 24?h continuous long term EEG monitoring study,” Epilepsy Research, vol. 51, no. 1-2, pp. 123–132, 2002.
[97]  P. Kellaway, “The electroencephalographic features of benign centrotemporal (rolandic) epilepsy of childhood,” Epilepsia, vol. 41, no. 8, pp. 1053–1056, 2000.
[98]  H. Doose, B. A. Neubauer, and B. Petersen, “The concept of hereditary impairment of brain maturation,” Epileptic Disorders, vol. 2, supplement 1, pp. S45–S49, 2000.
[99]  C. P. Panayiotopoulos, M. Michael, S. Sanders, T. Valeta, and M. Koutroumanidis, “Benign childhood focal epilepsies: assessment of established and newly recognized syndromes,” Brain, vol. 131, part 9, pp. 2264–2286, 2008.
[100]  Y. Ay, S. Gokben, G. Serdaroglu et al., “Neuropsychologic impairment in children with rolandic epilepsy,” Pediatric Neurology, vol. 41, no. 5, pp. 359–363, 2009.
[101]  J. Danielsson and F. Petermann, “Cognitive deficits in children with benign rolandic epilepsy of childhood or rolandic discharges: a study of children between 4 and 7 years of age with and without seizures compared with healthy controls,” Epilepsy and Behavior, vol. 16, no. 4, pp. 646–651, 2009.
[102]  P. G. Rossi, A. Parmeggiani, A. Posar, M. C. Scaduto, S. Chiodo, and G. Vatti, “Landau-Kleffner syndrome (LKS): long-term follow-up and links with electrical status epilepticus during sleep (ESES),” Brain and Development, vol. 21, no. 2, pp. 90–98, 1999.
[103]  T. Deonna and E. Roulet-Perez, “Early-onset acquired epileptic aphasia (Landau-Kleffner syndrome, LKS) and regressive autistic disorders with epileptic EEG abnormalities: the continuing debate,” Brain and Development, vol. 32, no. 9, pp. 746–752, 2010.
[104]  A. Pan and H. O. Lüders, “Epileptiform discharges in benign focal epilepsy of childhood,” Epileptic Disorders, vol. 2, supplement 1, pp. S29–S36, 2000.
[105]  B. Clemens and E. Majoros, “Sleep studies in benign epilepsy of childhood with rolandic spikes. II. Analysis of discharge frequency and its relation to sleep dynamics,” Epilepsia, vol. 28, no. 1, pp. 24–27, 1987.
[106]  F. Ferrillo, M. Beelke, and L. Nobili, “Sleep EEG synchronization mechanisms and activation of interictal epileptic spikes,” Clinical Neurophysiology, vol. 111, supplement 2, pp. S65–S73, 2000.
[107]  L. Nobili, M. G. Baglietto, M. Beelke et al., “Modulation of sleep interictal epileptiform discharges in partial epilepsy of childhood,” Clinical Neurophysiology, vol. 110, no. 5, pp. 839–845, 1999.
[108]  O. Dulac, C. Billard, and M. Arthuis, “Electroclinical and evolutive aspects of the epilepsy in the aphasic-epileptic syndrome,” Archives Francaises de Pediatrie, vol. 40, no. 4, pp. 299–308, 1983.
[109]  E. Hirsch, C. Marescaux, P. Maquet et al., “Landau-Kleffner syndrome: a clinical and EEG study of five cases,” Epilepsia, vol. 31, no. 6, pp. 756–767, 1990.
[110]  C. Marescaux, E. Hirsch, S. Finck et al., “Landau-Kleffner syndrome: a pharmacologic study of five cases,” Epilepsia, vol. 31, no. 6, pp. 768–777, 1990.
[111]  E. W. Ford, F. Morrell, and W. W. Whisler, “Methohexital anesthesia in the surgical treatment of uncontrollable epilepsy,” Anesthesia and Analgesia, vol. 61, no. 12, pp. 997–1001, 1982.
[112]  P. Veggiotti, C. Termine, E. Granocchio, S. Bova, G. Papalia, and G. Lanzi, “Long-term neuropsychological follow-up and nosological considerations in five patients with continuous spikes and waves during slow sleep,” Epileptic Disorders, vol. 4, no. 4, pp. 243–249, 2002.
[113]  C. A. Tassinari, M. Bureau, C. Dravet, B. B. Dalla, and J. Roger, “Epilepsy with continuous spike and waves during slow sleep,” in Epileptic Syndromes in Infancy,Childhood and Adolescence, J. Roger, C. Dravet, M. Bureau, F. E. Dreifuss, and P. Wolf, Eds., pp. 194–204, John Libbey, London, UK, 1985.
[114]  C. Billiard, A. Autret, and F. Laffont, “Aphasie acquise de l'enfant avec epilepsie a propos de 4 observations avec etat de mal electrique infraclinique du sommeil,” Revue d'Electroencéphalographie et de Neurophysiologie Clinique, vol. 11, no. 3-4, pp. 457–467, 1981.
[115]  E. Roulet-Perez, V. Davidoff, P. A. Despland, and T. Deonna, “Mental and behavioural deterioration of children with epilepsy and CSWS: acquired epileptic frontal syndrome,” Developmental Medicine and Child Neurology, vol. 35, no. 8, pp. 661–674, 1993.
[116]  C. A. Tassinari, G. Rubboli, L. Volpi et al., “Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia,” Clinical Neurophysiology, vol. 111, supplement 2, pp. S94–S102, 2000.
[117]  M. Siniatchkin, K. Groening, J. Moehring et al., “Neuronal networks in children with continuous spikes and waves during slow sleep,” Brain, vol. 133, no. 9, pp. 2798–2813, 2010.
[118]  C. A. Tassinari, G. Cantalupo, L. Rios-Pohl, E. D. Giustina, and G. Rubboli, “Encephalopathy with status epilepticus during slow sleep: ‘the penelope syndrome’,” Epilepsia, vol. 50, supplement 7, pp. 4–8, 2009.
[119]  M. Massimini, G. Tononi, and R. Huber, “Slow waves, synaptic plasticity and information processing: insights from transcranial magnetic stimulation and high-density EEG experiments,” European Journal of Neuroscience, vol. 29, no. 9, pp. 1761–1770, 2009.
[120]  J. Roger, C. Remy, M. Bureau et al., “Lennox-Gastaut syndrome in the adult,” Revue Neurologique, vol. 143, no. 5, pp. 401–405, 1987.
[121]  G. Bauer, F. Aichner, and L. Saltuari, “Epilepsies with diffuse slow spikes and waves of late onset,” European Neurology, vol. 22, no. 5, pp. 344–350, 1983.
[122]  C. G. Lipinski, “Epilepsies with astatic seizures of late onset,” Epilepsia, vol. 18, no. 1, pp. 13–20, 1977.
[123]  E. Stenzel and C. Panteli, “Lennox-Gastaut-Syndome des 2. Lebensjahrzehntes,” in Epilepsie, H. Hemschmidt, R. Rentz, and J. Jungmann, Eds., pp. 99–107, Thieme, Stuttgart, Germany, 1983.
[124]  W. T. Blume, “Pathogenesis of Lennox-Gastaut syndrome: considerations and hypotheses,” Epileptic Disorders, vol. 3, no. 4, pp. 183–196, 2001.
[125]  P. Halász, “Runs of rapid spikes in sleep: a characteristic EEG expression of generalized malignant epileptic encephalopathies. A conceptual review with new pharmacological data,” Epilepsy Research, Supplement, vol. 2, pp. 49–71, 1991.
[126]  S. Ohtahara, Y. Ohtsuka, and K. Kobayashi, “Lennox-Gastaut syndrome: a new vista,” Psychiatry and Clinical Neurosciences, vol. 49, no. 3, pp. S179–S183, 1995.
[127]  H. Doose, “Myoclonic-astatic epilepsy,” Epilepsy Research, Supplement, vol. 6, pp. 163–168, 1992.
[128]  H. Doose, “Myoclinic astatic epilepsy of early childhood,” in Epileptic Syndromes in Infancy, Childhood, and Adolescence, J. Roger, M. Bureau, C. Dravet, F. E. Dreifuss, A. Perret, and P. Wolf, Eds., pp. 103–114, John Libbey, London, UK, 2nd edition, 1992.
[129]  P. Halász, J. Janszky, G. Barcs, and A. Szucs, “Generalised paroxysmal fast activity (GPFA) is not always a sign of malignant epileptic encephalopathy,” Seizure, vol. 13, no. 4, pp. 270–276, 2004.
[130]  P. Peigneux, S. Laureys, X. Delbeuck, and P. Maquet, “Sleeping brain, learning brain. The role of sleep for memory systems,” NeuroReport, vol. 12, no. 18, pp. A111–A124, 2001.
[131]  H. G. Wieser, “Surgically remediable temporal lobe syndromes,” in Surgical Treatment of the Epilepsies, J. Engel Jr., Ed., pp. 49–63, Raven Press, New York, NY, USA, 2nd edition, 1993.
[132]  J. Engel Jr., “Introduction to temporal lobe epilepsy,” Epilepsy Research, vol. 26, no. 1, pp. 141–150, 1996.
[133]  T. L. Babb, W. R. Kupfer, J. K. Pretorius, P. H. Crandall, and M. F. Levesque, “Synaptic reorganization by mossy fibers in human epileptic fascia dentata,” Neuroscience, vol. 42, no. 2, pp. 351–363, 1991.
[134]  Z. Maglóczky, S. S. Cash, L. Papp, G. Karmos, E. Halgren, and I. Ulbert, “La minar analysis of slow wave activity in humans,” Brain, vol. 133, no. 9, pp. 2814–2829, 2010.
[135]  T. P. Sutula and F. E. Dudek, “Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system,” Progress in Brain Research, vol. 163, pp. 541–563, 2007.
[136]  B. C. Bernhardt, K. J. Worsley, P. Besson et al., “Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy,” NeuroImage, vol. 42, no. 2, pp. 515–524, 2008.
[137]  N. Bernasconi, S. Duchesne, A. Janke, J. Lerch, D. L. Collins, and A. Bernasconi, “Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy,” NeuroImage, vol. 23, no. 2, pp. 717–723, 2004.
[138]  F. Angeleri, G. Marchesi, C. Cianchetti, A. Ferroni, and P. Bergonzi, “Correlations between the interattack discharges and the electroclinical crises of the temporal lobe in 50 polygraphic recordings of nocturnal sleep,” Rivista di Neurologia, vol. 43, no. 6, pp. 371–379, 1973.
[139]  A. J. Rowan, R. J. Veldhuisen, and N. J. D. Nagelkerke, “Comparative evaluation of sleep deprivation and sedated sleep EEGs as diagnostic aids in epilepsy,” Electroencephalography and Clinical Neurophysiology, vol. 54, no. 4, pp. 357–364, 1982.
[140]  J. P. Lieb, J. P. Joseph, J. Engel Jr., J. Walker, and P. H. Crandall, “Sleep state and seizure foci related to depth spike activity in patients with temporal lobe epilepsy,” Electroencephalography and Clinical Neurophysiology, vol. 49, no. 5-6, pp. 538–557, 1980.
[141]  M. Sammaritano, G. L. Gigli, and J. Gotman, “Interictal spiking during wakefulness and sleep and the localization of foci in temporal lobe epilepsy,” Neurology, vol. 41, no. 2, part 1, pp. 290–297, 1991.
[142]  B. A. Malow, X. Lin, R. Kushwaha, and M. S. Aldrich, “Interictal spiking increases with sleep depth in temporal lobe epilepsy,” Epilepsia, vol. 39, no. 12, pp. 1309–1316, 1998.
[143]  Z. Clemens, J. Janszky, B. Clemens, A. Szucs, and P. Halász, “Factors affecting spiking related to sleep and wake states in temporal lobe epilepsy (TLE),” Seizure, vol. 14, no. 1, pp. 52–57, 2005.
[144]  P. Halász, J. Janszky, G. Y. Rásonyi et al., “Postoperative interictal spikes during sleep contralateral to the operated side is associated with unfavourable surgical outcome in patients with preoperative bitemporal spikes,” Seizure, vol. 13, no. 7, pp. 460–466, 2004.
[145]  G. Buzsáki, “Memory consolidation during sleep: a neurophysiological perspective,” Journal of Sleep Research, vol. 7, supplement 1, pp. 17–23, 1998.
[146]  F. Moroni, L. Nobili, F. de Carli et al., “Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus,” NeuroImage, vol. 60, no. 1, pp. 497–504, 2012.
[147]  F. Moroni, L. Nobili, G. Curcio et al., “Sleep in the human hippocampus: a stereo-EEG study,” PLoS ONE, vol. 2, no. 9, article e867, 2007.
[148]  T. Wagner, N. Axmacher, K. Lehnertz, C. E. Elger, and J. Fell, “Sleep-dependent directional coupling between human neocortex and hippocampus,” Cortex, vol. 46, no. 2, pp. 256–263, 2010.
[149]  N. Axmacher, S. Haupt, G. Fernández, C. E. Elger, and J. Fell, “The role of sleep in declarative memory consolidation—direct evidence by intracranial EEG,” Cerebral Cortex, vol. 18, no. 3, pp. 500–507, 2008.
[150]  E. Lugaresi, F. Cirignotta, and P. Montagna, “Nocturnal paroxysmal dystonia,” Journal of Neurology Neurosurgery and Psychiatry, vol. 49, no. 4, pp. 375–380, 1986.
[151]  I. E. Scheffer, K. P. Bhatia, I. Lopes-Cendes et al., “Autosomal dominant nocturnal frontal lobe epilepsy: a distinctive clinical disorder,” Brain, vol. 118, no. 1, pp. 61–73, 1995.
[152]  A. Oldani, M. Zucconi, L. Ferini-Strambi, D. Bizzozero, and S. Smirne, “Autosomal dominant nocturnal frontal lobe epilepsy: electroclinical picture,” Epilepsia, vol. 37, no. 10, pp. 964–976, 1996.
[153]  I. Anan and S. D. Dudley, “Relation of supplementary motor area epilepsy and sleep,” in Proceedings of the Epilepsy and Sleep Symposium, abstract (16), Cleveland, Ohio, USA, June 1998.
[154]  M. G. Terzano, M. Monge-Strauss, F. Mikol, M. C. Spaggiari, and L. Parrino, “Cyclic alternating pattern as a provocative factor in nocturnal paroxysmal dystonia,” Epilepsia, vol. 38, no. 9, pp. 1015–1025, 1997.
[155]  P. Aridon, C. Marini, C. Di Resta et al., “Increased sensitivity of the neuronal nicotinic receptor α2 subunit causes familial epilepsy with nocturnal wandering and ictal fear,” The American Journal of Human Genetics, vol. 79, no. 2, pp. 342–350, 2006.
[156]  Z. Han, N. Le Novère, M. Zoli, J. A. Hill Jr., N. Champtiaux, and J. Changeux, “Localization of nAChR subunit mRNAs in the brain of Macaca mulatta,” European Journal of Neuroscience, vol. 12, no. 10, pp. 3664–3674, 2000.
[157]  L. Parrino, F. de Paolis, G. Milioli et al., “Distinctive polysomnographic traits in nocturnal frontal lobe epilepsy,” Epilepsia, vol. 53, no. 7, pp. 1178–1184, 2012.
[158]  F. Provini, G. Plazzi, P. Tinuper, S. Vandi, E. Lugaresi, and P. Montagna, “Nocturnal frontal lobe epilepsy: a clinical and polygraphic overview of 100 consecutive cases,” Brain, vol. 122, no. 6, pp. 1017–1031, 1999.
[159]  P. Halász, A. Kelemen, and A. Sz?cs, “Physiopathogenetic interrelationship between nocturnal frontal lobe epilepsy and NREM arousal parasomnias,” Epilepsy Research and Treatment, vol. 2012, Article ID 312693, 8 pages, 2012.
[160]  F. Honbolygó, V. Csépe, A. Fekésházy et al., “Converging evidences on language impairment in Landau-Kleffner Syndrome revealed by behavioral and brain activity measures: a case study,” Clinical Neurophysiology, vol. 117, no. 2, pp. 295–305, 2006.
[161]  M. Steriade and D. Contreras, “Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus,” Journal of Neurophysiology, vol. 80, no. 3, pp. 1439–1455, 1998.
[162]  G. Tononi and C. Cirelli, “Sleep and synaptic homeostasis: a hypothesis,” Brain Research Bulletin, vol. 62, no. 2, pp. 143–150, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133