Although the advent of MRI impacted significantly our presurgical investigation, ictal semiology with interictal and ictal EEG has clearly retained its roles in localizing epileptogenesis. MRI-identified lesions considered epileptogenic on semiological and electroencephalographic grounds have increased the likelihood of resective surgery effectiveness whereas a nonlesional MRI would diminish this probability. Ictal propagation and the interplay between its source and destination have emerged as a significant component of seizure evaluation over the past 30 years. 1. Seizure Semiology and Epilepsy Evaluation before and Since MRI Ictal semiology and EEG dominated our localization of intractable epileptogenesis prior to the introduction of MRI. Dr. John Girvin and I each attempted to outdo the other in obtaining patient and observer descriptions of the patients’ seizures, guided by the most comprehensive observations and perceptions documented by Wilder Penfield and Herbert Jasper in Epilepsy and Functional Anatomy of the Human Brain [1]. Seizures of the first 3 medically intractable patients operated upon at University Hospital, London originated in the frontal, occipital, and anterior parietal lobes. Similar extratemporal experiences in Montreal and Glasgow (Dr. Girvin) and the Mayo Clinic (WTB) paradoxically sharpened our clinical definition of temporal/limbic epilepsy. In addition to Penfield’s identification for a semiological pattern as representing temporal lobe epilepsy and subsequent description of mesial temporal ictal semiology [2], subsequent studies disclosed that some features such as version and dysphasia could lateralise epileptogenesis within the temporal lobe, enhancing further the semiological role in this evaluation [3, 4]. The works of International League against Epilepsy Commissions on Epileptic Seizure Classification and Terminology have, in sequential fashion, clarified our clinical analyses. The 1981 ILAE Commission classified partial (focal) seizures into simple partial (consciousness preserved) and complex partial (consciousness impaired). This division has encountered clinical and heuristic limitations as it depends upon evaluating an entity—consciousness—that can neither be defined nor assessed. Gloor [5] discusses the several aspects of consciousness presented by philosophers (1713), neuropsychologists, and other neuroscientists and since Hebb [6]. “As none of the attempts at arriving at a scientifically satisfactory concept of consciousness have been successful” [5], neuroscientists have turned to the more tractable aspects
References
[1]
W. G. Penfield and H. H. Jasper, Epilepsy and the Functional Anatomy of the Human Brain, Little Brown, Boston, Mass, USA, 1954.
[2]
H. G. Wieser, J. Engel Jr., P. D. Williamson, T. L. Babb, and P. Gloor, “Surgically remedial temporal lobe syndromes,” in Surgical Treatment of the Epilepsies, J. Engel Jr., Ed., pp. 49–63, Raven Press, New York, NY, USA, 1993.
[3]
M. Gabr, H. Luders, D. Dinner, H. Morris, and E. Wyllie, “Speech manifestations in lateralization of temporal lobe seizures,” Annals of Neurology, vol. 25, no. 1, pp. 82–87, 1989.
[4]
P. Kotagal, H. Luders, H. H. Morris et al., “Dystonic posturing in complex partial seizures of temporal lobe onset: a new lateralizing sign,” Neurology, vol. 39, no. 2, pp. 196–201, 1989.
[5]
P. Gloor, “Consciousness as a neurological concept in epileptology: a critical review,” Epilepsia, vol. 27, no. 2, pp. S14–S26, 1986.
[6]
D. O. Hebb, “The problem of consciousness and introspection,” in Brain Mechanism and Consciousness, J. F. Delafresnaye, Ed., pp. 402–421, Charles Thomas, Springfield, Ill, USA, 1954.
[7]
W. T. Blume, H. O. Lüders, E. Mizrahi, C. Tassinari, W. van Emde Boas, and J. Engel Jr., “Glossary of descriptive terminology for ictal semiology: report of the ILAE Task Force on classification and terminology,” Epilepsia, vol. 42, no. 9, pp. 1212–1218, 2001.
[8]
P. Gloor, “The amygdaloid system: amnesia in temporal lobe epilepsy, clinical and anatomical considerations,” in The Temporal Lobe and Limbic System, P. Gloor, Ed., pp. 710–717, Oxford University Press, New York, NY, USA, 1997.
[9]
W. T. Blume, J. L. Borghesi, and J. F. Lemieux, “Interictal indices of temporal seizure origin,” Annals of Neurology, vol. 34, no. 5, pp. 703–709, 1993.
[10]
F. A. Gibbs and E. L. Gibbs, Atlas of Electroencephalography, vol. 2 of Epilepsy, Addison-Wesley, Reading, Pa, USA, 1952.
[11]
H. H. Jasper, “The ten-twenty system of the International Federation,” Electroencephalography and Clinical Neurophysiology, vol. 10, pp. 371–373, 1958.
[12]
R. M. Sadler and J. Goodwin, “Multiple electrodes for detecting spikes in partial complex seizures,” Canadian Journal of Neurological Sciences, vol. 16, no. 3, pp. 326–329, 1989.
[13]
W. T. Blume, G. B. Young, and J. F. Lemieux, “EEG morphology of partial epileptic seizures,” Electroencephalography and Clinical Neurophysiology, vol. 57, no. 4, pp. 295–302, 1984.
[14]
W. T. Blume, G. M. Holloway, and S. Wiebe, “Temporal epileptogenesis: localizing value of scalp and subdural interictal and ictal EEG data,” Epilepsia, vol. 42, no. 4, pp. 508–514, 2001.
[15]
R. S. McLachlan, R. L. Nicholson, and S. Black, “Nuclear magnetic resonance imaging, a new approach to the investigation of refractory temporal lobe epilepsy,” Epilepsia, vol. 26, no. 6, pp. 555–562, 1985.
[16]
D. H. Lee, F. Q. Gao, J. M. Rogers et al., “MR in temporal lobe epilepsy: analysis with pathologic confirmation,” American Journal of Neuroradiology, vol. 19, no. 1, pp. 19–27, 1998.
[17]
A. Gambardella, A. Palmini, F. Andermann et al., “Usefulness of focal rhythmic discharges on scalp EEG of patients with focal cortical dysplasia and intractable epilepsy,” Electroencephalography and Clinical Neurophysiology, vol. 98, no. 4, pp. 243–249, 1996.
[18]
V. Salanova, O. Markand, and R. Worth, “Temporal lobe epilepsy: analysis of patients with dual pathology,” Acta Neurologica Scandinavica, vol. 109, no. 2, pp. 126–131, 2004.
[19]
R. M. Sadler, “The syndrome of mesial temporal lobe epilepsy with hippocampal sclerosis: clinical features and differential diagnosis,” Advances in Neurology, vol. 97, pp. 27–37, 2006.
[20]
F. Semah, M. C. Picot, C. Adam et al., “Is the underlying cause of epilepsy a major prognostic factor for recurrence?” Neurology, vol. 51, no. 5, pp. 1256–1262, 1998.
[21]
W. T. Blume, “Clinical intracranial overview of seizure synchrony and spread,” Canadian Journal of Neurological Sciences, vol. 36, no. 2, pp. S55–S57, 2009.
[22]
C. Munari and J. Bancaud, “Electroclinical symptomatology of partial seizures of orbital frontal origin.,” in Advances in Neurology: Frontal Lobe Seizures and Epilepsies, P. Chauvel, A. V. Delgado-Escueta, E. Halgren, and J. Bancaud, Eds., vol. 57, pp. 257–265, 1992.
[23]
D. Spencer, “Technical controversies,” in Surgical Treatment of the Epilepsies, J. Engel Jr., Ed., pp. 583–591, Raven Press, New York, NY, USA, 2nd edition, 1993.
[24]
F. J. X. Graydon, J. A. Nunn, C. E. Polkey, and R. G. Morris, “Neuropsychological outcome and the extent of resection in the unilateral temporal lobectomy,” Epilepsy and Behavior, vol. 2, no. 2, pp. 140–151, 2001.
[25]
M. Seidenberg, B. Hermann, A. R. Wyler, K. Davies, F. C. Dohan, and C. Leveroni, “Neuropsychological outcome following anterior temporal lobectomy in patients with and without the syndrome of mesial temporal lobe epilepsy,” Neuropsychology, vol. 12, no. 2, pp. 303–316, 1998.