全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anticancer Effect of Fucoidan in Combination with Tyrosine Kinase Inhibitor Lapatinib

DOI: 10.1155/2014/865375

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Despite a number of in vitro and in vivo studies reporting the efficacy of fucoidan in treating various cancers, few studies have measured the efficacy of dietary fucoidan (DF) in combination with cancer drugs. Thus, we examined the sensitivity of DF in combination with the EGFR/ERBB2-targeting reagent lapatinib on cancer cells. Method. We selected six EGFR/ERBB2-amplified cancer cell lines (OE19, NCI-N87, OE33, ESO26, MKN7, and BT474) as an in vitro model and tested their sensitivity to DF alone and to DF in combination with the well-known EGFR/ERBB2-targeting reagent lapatinib. Result. Overall, in drug independent sensitivity test, DF alone did not significantly inhibit the growth of EGFR/ERBB2-amplified cancer cells in vitro. When DF was given in combination with lapatinib, however, it tended to synergistically inhibit cell growth in OE33 but antagonized the action of lapatinib in ESO26, NCI-N87, and OE19. Conclusion. This study suggests that DF has the potential to increase or decrease the effects of certain anticancer drugs on certain cancer cell types. Further study is needed to explore the mechanism of interaction and synergistic antitumor activity of DF in combination with chemotherapy and targeted therapy. 1. Introduction The use of dietary supplements (DS) is gaining in global popularity as a form of complementary and alternative medicine (CAM) [1, 2]. DS, defined as any product that contains vitamins, minerals, herbs or other botanicals, amino acids, enzymes, and/or other ingredients intended to supplement diet, is currently one of the most increasingly used CAM therapies [3]. A study found that 69% of the cancer patients in the US use DS following their cancer diagnosis [4]. A recent Australian survey with cancer patients also reported that approximately 69% of respondents had used one form of CAM in the previous year and 41% of them had visited a CAM practitioner [5]. Currently, thousands of DS products are available over the counter without health professionals’ prescription, though the majority of DS have yet to be evaluated in clinical trials. Thus, most oncologists are concerned about possible herb-drug interactions that might occur with conventional anticancer drugs resulting in either excess toxicity or reduced efficacy [6]. A few studies have examined the interaction between herbs and chemotherapy drugs, but none have been examined yet to look at targeted agents [6]. And so, study on DS is essential to provide evidence-based information for cancer patients as well as healthcare practitioners. Fucoidan, one kind of DS, has

References

[1]  D. Eisenberg, R. Davis, S. Ettner et al., “Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey,” Journal of the American Medical Association, vol. 280, no. 18, pp. 1569–1575, 1998.
[2]  A. H. MacLennan, D. H. Wilson, and A. W. Taylor, “Prevalence and cost of alternative medicine in Australia,” The Lancet, vol. 347, no. 9001, pp. 569–573, 1996.
[3]  National Center for Complementary Alternative Medicine, What Is Complementary Medicine (CAM)?National Center for Complementary Alternative Medicine, Bethesda, Md, USA, 2007.
[4]  L. M. Ferrucci, R. McCorkle, T. Smith, K. D. Stein, and B. Cartmel, “Factors related to the use of dietary supplements by cancer survivors,” Journal of Alternative and Complementary Medicine, vol. 15, no. 6, pp. 673–680, 2009.
[5]  C. C. L. Xue, A. L. Zhang, V. Lin, C. Da Costa, and D. F. Story, “Complementary and alternative medicine use in Australia: a national population-based survey,” Journal of Alternative and Complementary Medicine, vol. 13, no. 6, pp. 643–650, 2007.
[6]  A. Sparreboom, M. C. Cox, M. R. Acharya, and W. D. Figg, “Herbal remedies in the United States: potential adverse interactions with anticancer agents,” Journal of Clinical Oncology, vol. 22, no. 12, pp. 2489–2503, 2004.
[7]  E. Kim, S. Park, J.-Y. Lee, and J. Park, “Fucoidan present in brown algae induces apoptosis of human colon cancer cells,” BMC Gastroenterology, vol. 10, no. 1, p. 96, 2010.
[8]  Z. Zhang, K. Teruya, H. Eto, and S. Shirahata, “Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ros-dependent JNK activation and mitochondria-mediated pathways,” PLoS ONE, vol. 6, no. 11, Article ID e27441, 2011.
[9]  A. Cumashi, N. A. Ushakova, M. E. Preobrazhenskaya et al., “A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds,” Glycobiology, vol. 17, no. 5, pp. 541–552, 2007.
[10]  K. Hayashi, T. Nakano, M. Hashimoto, K. Kanekiyo, and T. Hayashi, “Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection,” International Immunopharmacology, vol. 8, no. 1, pp. 109–116, 2008.
[11]  J. Wang, Q. Zhang, Z. Zhang, and Z. Li, “Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica,” International Journal of Biological Macromolecules, vol. 42, no. 2, pp. 127–132, 2008.
[12]  H. Fitton, “Brown marine algae: a survey of therapeutic potentials,” Alternative and Complementary Therapies, vol. 9, no. 1, pp. 29–33, 2003.
[13]  J. Teas, “The consumption of seaweed as a protective factor in the etiology of breast cancer,” Medical Hypotheses, vol. 7, no. 5, pp. 601–613, 1981.
[14]  H. Funahashi, T. Imai, T. Mase et al., “Seaweed prevents breast cancer?” Japanese Journal of Cancer Research, vol. 92, no. 5, pp. 483–487, 2001.
[15]  M. Ikeguchi, M. Yamamoto, Y. Arai et al., “Fucoidan reduces the toxicities of chemotherapy for patients with unresectable advanced or recurrent colorectal cancer,” Oncology Letters, vol. 2, no. 2, pp. 319–322, 2011.
[16]  M. Xue, Y. Ge, J. Zhang, et al., “Anticancer properties and mechanisms of Fucoidan on mouse breast cancer in vitro and in vivo,” PLoS ONE, vol. 7, no. 8, Article ID e43483, 2012.
[17]  H. Maruyama, H. Tamauchi, M. Iizuka, and T. Nakano, “The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu),” Planta Medica, vol. 72, no. 15, pp. 1415–1417, 2006.
[18]  H. Itoh, H. Noda, H. Amano, C. Zhuaug, T. Mizuno, and H. Ito, “Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of phaeophyceae,” Anticancer Research A, vol. 13, no. 6, pp. 2045–2052, 1993.
[19]  T. Alekseyenko, S. Zhanayeva, A. Venediktova et al., “Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk sea Fucus evanescens brown alga,” Bulletin of Experimental Biology and Medicine, vol. 143, no. 6, pp. 730–732, 2007.
[20]  D. Coombe, C. Parish, I. Ramshaw, and J. Snowden, “Analysis of the inhibition of tumour metastasis by sulphated polysaccharides,” International Journal of Cancer, vol. 39, no. 1, pp. 82–88, 1987.
[21]  S. Koyanagi, N. Tanigawa, H. Nakagawa, S. Soeda, and H. Shimeno, “Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities,” Biochemical Pharmacology, vol. 65, no. 2, pp. 173–179, 2003.
[22]  D. Riou, S. Colliec-Jouault, D. Pinczon Du Sel et al., “Antitumor and antiproliferative effects of a fucan extracted from ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line,” Anticancer Research A, vol. 16, no. 3, pp. 1213–1218, 1996.
[23]  Y. Aisa, Y. Miyakawa, T. Nakazato et al., “Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways,” American Journal of Hematology, vol. 78, no. 1, pp. 7–14, 2005.
[24]  K. Haneji, T. Matsuda, M. Tomita et al., “Fucoidan extracted from cladosiphon okamuranus tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells,” Nutrition and Cancer, vol. 52, no. 2, pp. 189–201, 2005.
[25]  T. Nagamine, K. Hayakawa, T. Kusakabe, et al., “Inhibitory effect of Fucoidan on Huh7 hepatoma cells through downregulation of CXCL12,” Nutrition and Cancer, vol. 61, no. 3, pp. 340–347, 2009.
[26]  J. Ye, Y. Li, K. Teruya et al., “Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells,” Cytotechnology, vol. 47, no. 1–3, pp. 117–126, 2005.
[27]  American Cancer Society, Find Support & Treatment, American Cancer Society, Atlandta, Ga, USA, 2011.
[28]  2011, http://www.mskcc.org/cancer-care/herb/fucoidan.
[29]  Z. Zhang, K. Teruya, T. Yoshida, H. Eto, and S. Shirahata, “Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 Breast cancer cells,” Marine Drugs, vol. 11, no. 1, pp. 81–98, 2013.
[30]  K. Azuma, T. Ishihara, H. Nakamoto, et al., “Effects of oral administration of Fucoidan extracted from cladosiphon okamuranus on tumor growth and survival time in a tumor-bearing mouse model,” Marine Drugs, vol. 10, no. 10, pp. 2337–2348, 2012.
[31]  K. Matsubara, C. Xue, X. Zhao, M. Mori, T. Sugawara, and T. Hirata, “Effects of middle molecular weight fucoidans on in vitro and ex vivo angiogenesis of endothelial cells,” International Journal of Molecular Medicine, vol. 15, no. 4, pp. 695–699, 2005.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133