Traditional Chinese medicine (TCM) herbal formulae can be valuable therapeutic strategies and drug discovery resources. However, the active ingredients and action mechanisms of most TCM formulae remain unclear. Therefore, the identification of potent ingredients and their actions is a major challenge in TCM research. In this study, we used a network pharmacology approach we previously developed to help determine the potential antidiabetic ingredients from the traditional Ge-Gen-Qin-Lian decoction (GGQLD) formula. We predicted the target profiles of all available GGQLD ingredients to infer the active ingredients by clustering the target profile of ingredients with FDA-approved antidiabetic drugs. We also applied network target analysis to evaluate the links between herbal ingredients and pharmacological actions to help explain the action mechanisms of GGQLD. According to the predicted results, we confirmed that a novel antidiabetic ingredient from Puerariae Lobatae radix (Ge-Gen), 4-Hydroxymephenytoin, increased the insulin secretion in RIN-5F cells and improved insulin resistance in 3T3-L1 adipocytes. The network pharmacology strategy used here provided a powerful means for identifying bioactive ingredients and mechanisms of action for TCM herbal formulae, including Ge-Gen-Qin-Lian decoction. 1. Introduction Type 2 diabetes (T2D), or noninsulin-dependent diabetes mellitus, is a common complex disease with an increasing prevalence worldwide. In 2012 it was estimated that more than 371 million people have diabetes and that T2D constitutes over 90% of diabetic patients [1]. Furthermore, epidemiological survey analysis suggests that the prevalence of diabetes is accelerating [2]. T2D is characterized by high blood glucose levels due to insufficient insulin secretion, insulin resistance, and impaired insulin action [3]. T2D is influenced by lifestyle factors, such as age, pregnancy, and obesity, but has a strong genetic predisposition [4]. Multiple genes are involved in genetic susceptibility, each making a small contribution to T2D risk [5, 6]. Alterations in multiple signaling pathways, for example, JAK-STAT, MAPK, VEGF, PPAR, P13K, and Wnt were implicated in the pathogenesis of the disease [7–9]. Treatments aimed at controlling high-level blood glucose, as well as therapies that prevent diabetic complications, have all shown specific therapeutic activity in T2D patients, such as metformin, alpha-glucosidase inhibitors, sulfonylureas, thiazolidinediones (TZDs), and insulin injections [10]. However, these treatments have shown limited efficacy and are
References
[1]
International Federation of Diabetes, IDF diabetes atlas, http://www.diabetesatlas.org/.
[2]
F. M. Ashcroft and P. Rorsman, “Diabetes mellitus and the β cell: the last ten years,” Cell, vol. 148, no. 6, pp. 1160–1171, 2012.
[3]
B. B. Kahn, “Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance,” Cell, vol. 92, no. 5, pp. 593–596, 1998.
[4]
R. F. Hamman, “Genetic and environmental determinants of non-insulin-dependent diabetes mellitus (NIDDM),” Diabetes/Metabolism Reviews, vol. 8, no. 4, pp. 287–338, 1992.
[5]
A. Bonnefond, P. Froguel, and M. Vaxillaire, “The emerging genetics of type 2 diabetes,” Trends in Molecular Medicine, vol. 16, no. 9, pp. 407–416, 2010.
[6]
I. Prokopenko, M. I. McCarthy, and C. M. Lindgren, “Type 2 diabetes: new genes, new understanding,” Trends in Genetics, vol. 24, no. 12, pp. 613–621, 2008.
[7]
A. J. Richard and J. M. Stephens, “Emerging roles of JAK-STAT signaling pathways in adipocytes,” Trends in Endocrinology and Metabolism, vol. 22, no. 8, pp. 325–332, 2011.
[8]
V. T. Samuel and G. I. Shulman, “Mechanisms for insulin resistance: common threads and missing links,” Cell, vol. 148, no. 5, pp. 852–871, 2012.
[9]
H. J. Welters and R. N. Kulkarni, “Wnt signaling: relevance to β-cell biology and diabetes,” Trends in Endocrinology and Metabolism, vol. 19, no. 10, pp. 349–355, 2008.
[10]
N. Morral, “Novel targets and therapeutic strategies for type 2 diabetes,” Trends in Endocrinology and Metabolism, vol. 14, no. 4, pp. 169–175, 2003.
[11]
R. G. Larkins, “New concepts for treatment of non-insulin-dependent diabetes mellitus,” Trends in Endocrinology and Metabolism, vol. 8, no. 5, pp. 187–191, 1997.
[12]
A. Pujol, R. Mosca, J. Farrés, and P. Aloy, “Unveiling the role of network and systems biology in drug discovery,” Trends in Pharmacological Sciences, vol. 31, no. 3, pp. 115–123, 2010.
[13]
L. H. Zhao, F. M. Lian, H. Y. Ji, Q. Zhou, L. Xia, and X. L. Tong, “Clinial examples of treatment for type 2 diabetes by professor Tong Xiao-lin using Ge-Gen-Qin-Lian decoction,” Chinese Journal of Experimental Traditional Medical Formulae, vol. 17, no. 4, pp. 249–251, 2011.
[14]
L. H. Zhao, H. Y. Ji, B. W. Ji, J. Song, and X. L. Tong, “Exploration of Ge-Gen-Qin-Lian Decoction's effect on diabetes mellitus in theory,” China Journal of Traditional Chinese Medicine and Pharmacy, vol. 27, no. 2, pp. 280–283, 2012.
[15]
W. Zhang, C.-Q. Liu, P.-W. Wang et al., “Puerarin improves insulin resistance and modulates adipokine expression in rats fed a high-fat diet,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 398–402, 2010.
[16]
F.-L. Hsu, I.-M. Liu, D.-H. Kuo, W.-C. Chen, H.-C. Su, and J.-T. Cheng, “Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats,” Journal of Natural Products, vol. 66, no. 6, pp. 788–792, 2003.
[17]
Y. M. Liu, Q. J. Feng, X. Niu, Q. Song, X. Zhang, and Y. M. Kang, “Puerarin reduces blood sugar in the diabetic mice and improves hyperlipidemia in rats,” The FASEB Journal, vol. 20, p. A298, 2006.
[18]
H.-T. Li, X.-D. Wu, A. K. Davey, and J. Wang, “Antihyperglycemic effects of baicalin on streptozotocin—nicotinamide induced diabetic rats,” Phytotherapy Research, vol. 25, no. 2, pp. 189–194, 2011.
[19]
H. Zhang, J. Wei, R. Xue et al., “Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression,” Metabolism, vol. 59, no. 2, pp. 285–292, 2010.
[20]
C. Weidner, J. C. de Groot, A. Prasad et al., “Amorfrutins are potent antidiabetic dietary natural products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 19, pp. 7257–7262, 2012.
[21]
X.-L. Tong, L.-H. Zhao, F.-M. Lian et al., “Clinical observations on the dose-effect relationship of Gegen Qin Lian Decoction on 54 out-patients with type 2 diabetes,” Journal of Traditional Chinese Medicine, vol. 31, no. 1, pp. 56–59, 2011.
[22]
C. H. Zhang, G. L. Xu, Y. H. Liu et al., “Anti-diabetic activities of Ge-Gen-Qin-Lian Decoction in high-fat diet combined with streptozotocin-induced diabetic rats and in 3T-L1 adipocytes,” Phytomedicine, vol. 20, no. 3-4, pp. 3221–3229, 2013.
[23]
F. Bai, Y. Xu, J. Chen et al., “Free energy landscape for the binding process of Huperzine A to acetylcholinesterase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 11, pp. 4273–4278, 2013.
[24]
S. Ohlson, “Designing transient binding drugs: a new concept for drug discovery,” Drug Discovery Today, vol. 13, no. 9-10, pp. 433–439, 2008.
[25]
S. Li and B. Zhang, “Traditional Chinese medicine network pharmacology: theory, methodology and application,” Chinese Journal of Natural Medicines, vol. 11, no. 2, pp. 110–120, 2013.
[26]
A. L. Hopkins, “Network pharmacology: the next paradigm in drug discovery,” Nature Chemical Biology, vol. 4, no. 11, pp. 682–690, 2008.
[27]
S. Li, Z. Q. Zhang, L. J. Wu, X. G. Zhang, Y. D. Li, and Y. Y. Wang, “Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network,” IET Systems Biology, vol. 1, no. 1, pp. 51–60, 2007.
[28]
S. Li, “Framework and practice of network-based studies for Chinese herbal formula,” Journal of Chinese Integrative Medicine, vol. 5, no. 5, pp. 489–493, 2007.
[29]
S. Li, “Network systems underlying traditional Chinese medicine syndrome and herb formula,” Current Bioinformatics, vol. 4, no. 3, pp. 188–196, 2009.
[30]
S. Li, B. Zhang, D. Jiang, Y. Wei, and N. Zhang, “Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae,” BMC Bioinformatics, vol. 11, supplement 11, article S6, 2010.
[31]
S. Li, “Network target: a starting point for traditional Chinese medicine network pharmacology,” Zhongguo Zhongyao Zazhi, vol. 36, no. 15, pp. 2017–2020, 2011.
[32]
S. Li, B. Zhang, and N. Zhang, “Network target for screening synergistic drug combinations with application to traditional Chinese medicine,” BMC Systems Biology, vol. 5, supplement 1, article S10, 2011.
[33]
U. Stelzl, U. Worm, M. Lalowski et al., “A human protein-protein interaction network: a resource for annotating the proteome,” Cell, vol. 122, no. 6, pp. 957–968, 2005.
[34]
H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001.
[35]
L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray, “From molecular to modular cell biology,” Nature, vol. 402, no. 6761, pp. C47–C52, 1999.
[36]
D. B. Goldstein, “Common genetic variation and human traits,” New England Journal of Medicine, vol. 360, no. 17, pp. 1696–1698, 2009.
[37]
E. E. Schadt, “Molecular networks as sensors and drivers of common human diseases,” Nature, vol. 461, no. 7261, pp. 218–223, 2009.
[38]
B. Zhang, X. Wang, and S. Li, “An integrative platform of TCM network pharmacology and its application on a Herbal Formula, Qing-Luo-Yin,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 456747, 12 pages, 2013.
[39]
Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant, “PubChem: a public information system for analyzing bioactivities of small molecules,” Nucleic Acids Research, vol. 37, no. 2, pp. W623–W633, 2009.
[40]
A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A. McKusick, “Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders,” Nucleic Acids Research, vol. 33, pp. D514–D517, 2005.
[41]
D. S. Wishart, C. Knox, A. C. Guo et al., “DrugBank: a knowledgebase for drugs, drug actions and drug targets,” Nucleic Acids Research, vol. 36, no. 1, pp. D901–D906, 2008.
[42]
S. Zhao and S. Li, “Network-based relating pharmacological and genomic spaces for drug target identification,” PLoS ONE, vol. 5, no. 7, Article ID e11764, 2010.
[43]
A. B. Parsons, R. L. Brost, H. Ding et al., “Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways,” Nature Biotechnology, vol. 22, no. 1, pp. 62–69, 2004.
[44]
D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009.
[45]
L. S. Li, N. B. Zhang, and S. Li, “Ranking effects of candidate drugs on biological process by integrating network analysis and Gene Ontology,” Chinese Science Bulletin, vol. 55, no. 26, pp. 2974–2980, 2010.
[46]
A. Kaiden Student, R. Y. Hsu, and M. D. Lane, “Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes,” Journal of Biological Chemistry, vol. 255, no. 10, pp. 4745–4750, 1980.
[47]
B. A. Nelson, K. A. Robinson, and M. G. Buse, “High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes,” Diabetes, vol. 49, no. 6, pp. 981–991, 2000.
[48]
H. Kitano, “A robustness-based approach to systems-oriented drug design,” Nature Reviews Drug Discovery, vol. 6, no. 3, pp. 202–210, 2007.
[49]
A. B. Wagner, “SciFinder Scholar 2006: an empirical analysis of research topic query processing,” Journal of Chemical Information and Modeling, vol. 46, no. 2, pp. 767–774, 2006.
[50]
S.-J. Lee, K. Umano, T. Shibamoto, and K.-G. Lee, “Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties,” Food Chemistry, vol. 91, no. 1, pp. 131–137, 2005.
[51]
L. J. Xu, F. E. Lu, and S. C. Wei, “Use of berberine derivativein preparing medicament for treating type-2 diabetes, adjusting blood sugar and blood fat,” Patents Number: CN100404534C, 2008.
[52]
G. Y. Yeh, D. M. Eisenberg, T. J. Kaptchuk, and R. S. Phillips, “Systematic review of herbs and dietary supplements for glycemic control in diabetes,” Diabetes Care, vol. 26, no. 4, pp. 1277–1294, 2003.
[53]
Z. Zhen, B. Chang, M. Li et al., “Anti-diabetic effects of a coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats,” American Journal of Chinese Medicine, vol. 39, no. 1, pp. 53–63, 2011.
[54]
J. C. Li, X. F. Shen, and X. L. Meng, “A traditional Chinese medicine JiuHuangLian (Rhizoma coptidis steamed with rice wine) reduces oxidative stress injury in type 2 diabetic rats,” Food and Chemical Toxicology, vol. 59, pp. 222–229, 2013.
[55]
X. F. Jiang, L. J. Wang, X. G. Li, Z. Q. Zhao, and J. Y. Zhu, “Isolation of Jatrorrhizine and Epiberberine in Coptis chinensis and their in vitro Hypoglycemic Effect,” Guizhou Agricultural Sciences, vol. 39, no. 9, pp. 44–46, 2011.
[56]
Y. Fu, B. R. Hu, Q. Tang, et al., “Effect of jatrorrhizine, berberine, Huanglian Decoction and compound-mimic prescription on blood glucose in mice,” Chinese Traditional and Herbal Drugs, vol. 36, no. 4, pp. 548–551, 2005.
[57]
A. Shirwaikar, K. Rajendran, and I. S. R. Punitha, “Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats,” Journal of Ethnopharmacology, vol. 97, no. 2, pp. 369–374, 2005.
[58]
S. Ali, J. Igoli, C. Clements et al., “Antidiabetic and antimicrobial activities of fractions and compounds isolated from Berberis brevissima Jafri and Berberis parkeriana Schneid,” Bangladesh Journal of Pharmacology, vol. 8, no. 3, pp. 336–342, 2013.
[59]
Y. S. Lee, W. S. Kim, K. H. Kim et al., “Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states,” Diabetes, vol. 55, no. 8, pp. 2256–2264, 2006.
[60]
D. Diengott and I. A. Mirsky, “Hypoglycemic action of indole-3-acetic acid by mouth in patients with diabetes mellitus,” Proceedings of the Society for Experimental Biology and Medicine, vol. 93, no. 1, pp. 109–110, 1956.
[61]
M. B. Hadimani, M. K. Purohit, C. Vanampally et al., “Guaifenesin derivatives promote neurite outgrowth and protect diabetic mice from neuropathy,” Journal of Medicinal Chemistry, vol. 56, no. 12, pp. 5071–5078, 2013.
[62]
X. Su, F. Pradaux-Caggiano, N. Vicker et al., “Adamantyl ethanone pyridyl derivatives: potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase type 1,” ChemMedChem, vol. 6, no. 9, pp. 1616–1629, 2011.
[63]
G. Bartosz, Food Oxidants and Antioxidants: Chemical, Biological, and Functional Properties, CRC Press, 2013.
[64]
R. Rahimi, S. Nikfar, B. Larijani, and M. Abdollahi, “A review on the role of antioxidants in the management of diabetes and its complications,” Biomedicine and Pharmacotherapy, vol. 59, no. 7, pp. 365–373, 2005.
[65]
L. Jovanovic, D. R. Hassman, B. Gooch et al., “Treatment of type 2 diabetes with a combination regimen of repaglinide plus pioglitazone,” Diabetes Research and Clinical Practice, vol. 63, no. 2, pp. 127–134, 2004.
[66]
R. Li, T. Ma, J. Gu, X. Liang, and S. Li, “Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients,” Scientific Reports, vol. 3, article 1543, 2013.
[67]
B. Jiang, X. Liang, Y. Chen et al., “Integrating next-generation sequencing and traditional tongue diagnosis to determine tongue coating microbiome,” Scientific Reports, vol. 2, article 936, 2012.
[68]
C. J. Schofield and C. Sutherland, “Disordered insulin secretion in the development of insulin resistance and Type 2 diabetes,” Diabetic Medicine, vol. 29, no. 8, pp. 972–979, 2012.
[69]
M. Van Epps-Fung, J. Williford, A. Wells, and R. W. Hardy, “Fatty acid-induced insulin resistance in adipocytes,” Endocrinology, vol. 138, no. 10, pp. 4338–4345, 1997.