全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ginseng Total Saponins Reverse Corticosterone-Induced Changes in Depression-Like Behavior and Hippocampal Plasticity-Related Proteins by Interfering with GSK-3β-CREB Signaling Pathway

DOI: 10.1155/2014/506735

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aimed to explore the antidepressant mechanisms of ginseng total saponins (GTS) in the corticosterone-induced mouse depression model. In Experiment 1, GTS (50, 25, and 12.5?mg?kg?1?d?1, intragastrically) were given for 3 weeks. In Experiment 2, the same doses of GTS were administrated after each corticosterone (20?mg?kg?1?d?1, subcutaneously) injection for 22 days. In both experiments, mice underwent a forced swimming test and a tail suspension test on day 20 and day 21, respectively, and were sacrificed on day 22. Results of Experiment 1 revealed that GTS (50 and 25?mg?kg?1?d?1) exhibited antidepressant activity and not statistically altered hippocampal protein levels of brain-derived neurotrophic factor (BDNF) and neurofilament light chain (NF-L). Results of Experiment 2 showed that GTS (50 and 25?mg?kg?1?d?1) ameliorated depression-like behavior without normalizing hypercortisolism. The GTS treatments reversed the corticosterone-induced changes in mRNA levels of BDNF and NF-L, and protein levels of BDNF NF-L, phosphor-cAMP response element-binding protein (Ser133), and phosphor-glycogen synthase kinase-3β (Ser9) in the hippocampus. These findings imply that the effect of GTS on corticosterone-induced depression-like behavior may be mediated partly through interfering with hippocampal GSK-3β-CREB signaling pathway and reversing decrease of some plasticity-related proteins. 1. Introduction Ginseng, the root of Panax ginseng C. A. Meyer (Araliaceae), is one of the most famous and valuable forms of traditional herbal medicine that has been widely applied for thousands of years. The early Chinese used ginseng as a general tonic and adaptogen to help the body to resist the adverse influence of a wide range of physical, chemical, and biological factors and to restore homeostasis [1]. Ginseng total saponins (GTS) are considered the principal bioactive ingredients behind claims of ginseng efficacy [2]. Recently, ginseng and ginsenosides have been shown to have several beneficial functions in the brain, including antidepressant or antistress effects. Our previous studies have shown that the water-based extract of ginseng exhibited protection against the hypercortisolism-induced impairment of hippocampal neurons without reversing the increased plasma corticosterone level [3, 4]. Some researchers reported that acute ginsenoside Rg1 treatment had antidepressant activity, as shown in a forced swimming test (FST) and a tail suspension test (TST) [5]. The antidepressant effects of ginsenosides administrated subacutely to normal mice or chronically to the

References

[1]  E. Nocerino, M. Amato, and A. A. Izzo, “The aphrodisiac and adaptogenic properties of ginseng,” Fitoterapia, vol. 71, supplement 1, pp. S1–S5, 2000.
[2]  L. P. Christensen, “Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects,” Advances in Food and Nutrition Research, vol. 55, pp. 1–99, 2008.
[3]  Z. Wang, J. Dai, L. Chen, Y. Huang, and Y. Zhao, “Preventive effects of panax ginseng on neuron damage induced by hypercortisolism,” Chinese Journal of Experimental Traditional Medical Formulae, vol. 16, no. 16, pp. 94–98, 2010.
[4]  Z. Wang, J. Dai, L. Chen, Y. Huang, and Y. Zhao, “Preventive action of panax ginseng roots in hypercortisolism-induced impairment of hippocampal neurons in male C57BL/6N mice,” Phytotherapy Research, vol. 25, no. 8, pp. 1242–1245, 2011.
[5]  B. Jiang, Z. Xiong, J. Yang, et al., “Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signaling pathway and neurogenesis in the hippocampus,” British Journal of Pharmacology, vol. 166, no. 6, pp. 1872–1887, 2012.
[6]  H. Dang, Y. Chen, X. Liu et al., “Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 8, pp. 1417–1424, 2009.
[7]  L. Liu, Y. Luo, R. Zhang, and J. Guo, “Effects of ginsenosides on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor in rats exposed to chronic unpredictable mild stress,” Zhongguo Zhong Yao Za Zhi, vol. 36, no. 10, pp. 1342–1347, 2011.
[8]  S. H. Lee, B. H. Jung, S. Y. Kim, E. H. Lee, and B. C. Chung, “The antistress effect of ginseng total saponin and ginsenoside Rg3 and Rb1 evaluated by brain polyamine level under immobilization stress,” Pharmacological Research, vol. 54, no. 1, pp. 46–49, 2006.
[9]  H. Einat, “Chronic oral administration of ginseng extract results in behavioral change but has no effects in mice models of affective and anxiety disorders,” Phytotherapy Research, vol. 21, no. 1, pp. 62–66, 2007.
[10]  W. K. Chan, J. T. Yabe, A. F. Pimenta, D. Ortiz, and T. B. Shea, “Neurofilaments can undergo axonal transport and cytoskeletal incorporation in a discontinuous manner,” Cell Motility and the Cytoskeleton, vol. 62, no. 3, pp. 166–179, 2005.
[11]  A. Yoshii and M. Constantine-Paton, “Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease,” Developmental Neurobiology, vol. 70, no. 5, pp. 304–322, 2010.
[12]  R. H. Lipsky and A. M. Marini, “Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity,” Annals of the New York Academy of Sciences, vol. 1122, pp. 130–143, 2007.
[13]  L. Minichiello, “TrkB signalling pathways in LTP and learning,” Nature Reviews Neuroscience, vol. 10, no. 12, pp. 850–860, 2009.
[14]  H. D. Schmidt and R. S. Duman, “The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior,” Behavioural Pharmacology, vol. 18, no. 5-6, pp. 391–418, 2007.
[15]  A. C. Conti, J. F. Cryan, A. Dalvi, I. Lucki, and J. A. Blendy, “cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs,” Journal of Neuroscience, vol. 22, no. 8, pp. 3262–3268, 2002.
[16]  J. A. Blendy, “The role of CREB in depression and antidepressant treatment,” Biological Psychiatry, vol. 59, no. 12, pp. 1144–1150, 2006.
[17]  H. Zhao, Q. Li, Z. Zhang, X. Pei, J. Wang, and Y. Li, “Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus,” Brain Research, vol. 1256, pp. 111–122, 2009.
[18]  H. Zhao, Q. Li, X. Pei et al., “Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus,” Behavioural Brain Research, vol. 201, no. 2, pp. 311–317, 2009.
[19]  C. A. Grimes and R. S. Jope, “Creb DNA binding activity is inhibited by glycogen synthase kinase-3β and facilitated by lithium,” Journal of Neurochemistry, vol. 78, no. 6, pp. 1219–1232, 2001.
[20]  J. W. Tullai, J. Chen, M. E. Schaffer, E. Kamenetsky, S. Kasif, and G. M. Cooper, “Glycogen synthase kinase-3 represses cyclic AMP Response element-binding protein (CREB)-targeted Immediate early genes in quiescent cells,” Journal of Biological Chemistry, vol. 282, no. 13, pp. 9482–9491, 2007.
[21]  X. Li and R. S. Jope, “Is glycogen synthase kinase-3 a central modulator in mood regulation?” Neuropsychopharmacology, vol. 35, no. 11, pp. 2143–2154, 2010.
[22]  R. S. Jope and G. V. W. Johnson, “The glamour and gloom of glycogen synthase kinase-3,” Trends in Biochemical Sciences, vol. 29, no. 2, pp. 95–102, 2004.
[23]  P. S. Klein and D. A. Melton, “A molecular mechanism for the effect of lithium on development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8455–8459, 1996.
[24]  T. D. Gould, H. Einat, R. Bhat, and H. K. Manji, “AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test,” International Journal of Neuropsychopharmacology, vol. 7, no. 4, pp. 387–390, 2004.
[25]  O. Kaidanovich-Beilin, A. Milman, A. Weizman, C. G. Pick, and H. Eldar-Finkelman, “Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on β-catenin in mouse hippocampus,” Biological Psychiatry, vol. 55, no. 8, pp. 781–784, 2004.
[26]  M. Shapira, A. Licht, A. Milman, C. G. Pick, E. Shohami, and H. Eldar-Finkelman, “Role of glycogen synthase kinase-3β in early depressive behavior induced by mild traumatic brain injury,” Molecular and Cellular Neuroscience, vol. 34, no. 4, pp. 571–577, 2007.
[27]  A. Wada, “Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades,” Journal of Pharmacological Sciences, vol. 110, no. 1, pp. 14–28, 2009.
[28]  R. Silva, A. R. Mesquita, J. Bessa et al., “Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3β,” Neuroscience, vol. 152, no. 3, pp. 656–669, 2008.
[29]  D. H. Oh, Y. C. Park, and S. H. Kim, “Increased glycogen synthase kinase-3β mRNA level in the hippocampus of patients with major depression: a study using the stanley neuropathology consortium integrative database,” Psychiatry Investigation, vol. 7, no. 3, pp. 202–207, 2010.
[30]  K. Zhang, X. Song, Y. Xu, et al., “Continuous GSK-3beta overexpression in the hippocampal dentate gyrus induces prodepressant-like effects and increases sensitivity to chronic mild stress in mice,” Journal of Affective Disorders, vol. 146, no. 1, pp. 45–52, 2013.
[31]  W. T. O'Brien, A. D. Harper, F. Jové et al., “Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium,” Journal of Neuroscience, vol. 24, no. 30, pp. 6791–6798, 2004.
[32]  Y. Bersudsky, A. Shaldubina, N. Kozlovsky, J. R. Woodgett, G. Agam, and R. H. Belmaker, “Glycogen synthase kinase-3β heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results,” Behavioural Pharmacology, vol. 19, no. 3, pp. 217–224, 2008.
[33]  R. Zhao, Z. Zhang, Y. Song, D. Wang, J. Qi, and S. Wen, “Implication of phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase-3β pathway in ginsenoside Rb1's attenuation of beta-amyloid-induced neurotoxicity and tau phosphorylation,” Journal of Ethnopharmacology, vol. 133, no. 3, pp. 1109–1116, 2011.
[34]  H. H. Zhao, J. Di, W. S. Liu, H. L. Liu, H. Lai, and Y. L. Lu, “Involvement of GSK3 and PP2A in ginsenoside Rb1's attenuation of aluminum-induced tau hyperphosphorylation,” Behavioural Brain Research, vol. 241, pp. 228–234, 2013.
[35]  China Pharmacopoeia Committee, China Pharmacopoeia, vol. 1, China Medical Science Press, Beijing, China, 2010.
[36]  S. L. Gao and H. Wang, “Technique on extraction and content determination of saponin from Momordica Grosvenori,” Natural Product Research and Development, vol. 13, pp. 36–40, 2001.
[37]  R. D. Porsolt, M. Le Pichon, and M. Jalfre, “Depression: a new animal model sensitive to antidepressant treatments,” Nature, vol. 266, no. 5604, pp. 730–732, 1977.
[38]  L. Steru, R. Chermat, B. Thierry, and P. Simon, “The tail suspension test: a new method for screening antidepressants in mice,” Psychopharmacology, vol. 85, no. 3, pp. 367–370, 1985.
[39]  P. Willner, “Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation,” Psychopharmacology, vol. 134, no. 4, pp. 319–329, 1997.
[40]  A. Gregus, A. J. Wintink, A. C. Davis, and L. E. Kalynchuk, “Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats,” Behavioural Brain Research, vol. 156, no. 1, pp. 105–114, 2005.
[41]  S. A. Johnson, N. M. Fournier, and L. E. Kalynchuk, “Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor,” Behavioural Brain Research, vol. 168, no. 2, pp. 280–288, 2006.
[42]  Y. Zhao, R. Ma, J. Shen, H. Su, D. Xing, and L. Du, “A mouse model of depression induced by repeated corticosterone injections,” European Journal of Pharmacology, vol. 581, no. 1-2, pp. 113–120, 2008.
[43]  W. Marks, N. M. Fournier, and L. E. Kalynchuk, “Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength,” Physiology and Behavior, vol. 98, no. 1-2, pp. 67–72, 2009.
[44]  S. L. Gourley and J. R. Taylor, “Recapitulation and reversal of a persistent depression-like syndrome in rodents,” Current Protocols in Neuroscience, no. 49, pp. 9.32.1–9.32.11, 2009.
[45]  R. Vidal, F. Pilar-Cuéllar, S. dos Anjos et al., “New strategies in the development of antidepressants: towards the modulation of neuroplasticity pathways,” Current Pharmaceutical Design, vol. 17, no. 5, pp. 521–533, 2011.
[46]  E. Castren, V. Voikar, and T. Rantamaki, “Role of neurotrophic factors in depression,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 18–21, 2007.
[47]  J. Alfonso, L. R. Frick, D. M. Silberman, M. L. Palumbo, A. M. Genaro, and A. C. Frasch, “Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments,” Biological Psychiatry, vol. 59, no. 3, pp. 244–251, 2006.
[48]  L. Song, W. Che, W. Min-wei, Y. Murakami, and K. Matsumoto, “Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress,” Pharmacology Biochemistry and Behavior, vol. 83, no. 2, pp. 186–193, 2006.
[49]  I.-C. Lai, C.-J. Hong, and S.-J. Tsai, “Expression of cAMP response element-binding protein in major depression before and after antidepressant treatment,” Neuropsychobiology, vol. 48, no. 4, pp. 182–185, 2003.
[50]  S. Yamada, M. Yamamoto, H. Ozawa, P. Riederer, and T. Saito, “Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder,” Journal of Neural Transmission, vol. 110, no. 6, pp. 671–680, 2003.
[51]  X. Li, W. Zhu, M.-S. Roh, A. B. Friedman, K. Rosborough, and R. S. Jope, “In vivo regulation of glycogen synthase kinase-3β (GSK3β) by serotonergic activity in mouse brain,” Neuropsychopharmacology, vol. 29, no. 8, pp. 1426–1431, 2004.
[52]  J.-M. Beaulieu, X. Zhang, R. M. Rodriguiz et al., “Role of GSK3β in behavioral abnormalities induced by serotonin deficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1333–1338, 2008.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133