全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice

DOI: 10.1155/2014/145901

Full-Text   Cite this paper   Add to My Lib

Abstract:

Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H) in high-fat diet- (HFD-) induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD) and severely diabetic (SD) mice.AL-H was orally administered to MD and SD mice at a dose of 400?mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis. 1. Introduction Obesity is a metabolic disease of pandemic proportions largely arising from positive energy balance, a consequence of sedentary life style, conditioned by environmental and genetic factors [1]. Obesity results from an imbalance between energy intake and expenditure. It is often associated with chronic diseases such as hyperlipidemia, hvpertension and noninsulin- dependent diabetes mellitus and with increased risk of coronary heart diseases [2]. It has been reported that variations in total energy intake and diet composition are important in the regulation of metabolic processes [3]. Excessive accumulation of lipids in nonadipose tissues such as liver, heart, skeletal muscle, kidney, and pancreas contributes to the pathogenesis of fatty liver, heart failure, and insulin resistance with the so-called lipotoxicity mechanism, fatty liver is an early hallmark of nonalcoholic fatty liver disease [4], the most common chronic liver

References

[1]  S.-I. Kang, H.-S. Shin, H.-M. Kim et al., “Anti-obesity properties of a Sasa quelpaertensis extract in high-fat diet-induced obese mice,” Bioscience, Biotechnology and Biochemistry, vol. 76, no. 4, pp. 755–761, 2012.
[2]  M. Miyata, T. Koyama, T. Kamitani, T. Toda, and K. Yazawa, “Anti-obesity effect on rodents of the traditional japanese food, tororokombu, shaved Laminaria,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 10, pp. 2326–2328, 2009.
[3]  S. Colagiuri, “Diabesity: therapeutic options,” Diabetes, Obesity and Metabolism, vol. 12, no. 6, pp. 463–473, 2010.
[4]  F. I. Achike, N.-H. P. To, H. Wang, and C.-Y. Kwan, “Obesity, metabolic syndrome, adipocytes and vascular function: a holistic viewpoint,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 1, pp. 1–10, 2011.
[5]  E. E. Kershaw and J. S. Flier, “Adipose tissue as an endocrine organ,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2548–2556, 2004.
[6]  G. Boden and G. I. Shulman, “Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction,” European Journal of Clinical Investigation, vol. 32, no. 3, pp. 14–23, 2002.
[7]  E. J. Gallagher, D. Leroith, and E. Karnieli, “Insulin resistance in obesity as the underlying cause for the metabolic syndrome,” Mount Sinai Journal of Medicine, vol. 77, no. 5, pp. 511–523, 2010.
[8]  R. Birari, V. Javia, and K. K. Bhutani, “Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats,” Fitoterapia, vol. 81, no. 8, pp. 1129–1133, 2010.
[9]  I. Melnikova and D. Wages, “Anti-obesity therapies,” Nature Reviews Drug Discovery, vol. 5, no. 5, pp. 369–370, 2006.
[10]  M. Mukherjee, “Human digestive and metabolic lipases—a brief review,” Journal of Molecular Catalysis B, vol. 22, no. 5-6, pp. 369–376, 2003.
[11]  D. H. Putnam, P. R. Miller, and P. Hucl, “Potential for production and utilization of annual canarygrass,” Cereal Foods World, vol. 41, no. 2, pp. 75–83, 1996.
[12]  C. H. O'Neill, G. M. Hodges, and P. N. Riddle, “A fine fibrous silica contaminant of flour in the high oesophageal cancer area of the north-east Iran,” International Journal of Cancer, vol. 26, no. 5, pp. 617–628, 1980.
[13]  P. Hucl, M. Matus-Cadiz, A. Vandenberg et al., “CDC Maria annual canarygrass,” Canadian Journal of Plant Science, vol. 81, no. 1, pp. 115–116, 2001.
[14]  A. Merzouki, F. Ed-Derfoufi, and J. Molero-Mesa, “Contribución al conocimiento de la medicina rife?a tradicional lll: fitoterapia de la diabetes en la provincia de Chefchaouen (norte de Marruecos),” ARS Pharmaceutica, vol. 44, no. 1, pp. 59–67, 2003.
[15]  M. J. Novas, A. M. Jiménez, and A. O. Asuero, “Determination of antioxidant activity of canary seed infusions by chemiluminescence,” Analytical Chemistry, vol. 59, no. 1, pp. 75–77, 2004.
[16]  A. P. C. Balbi, K. E. Campos, and M. J. Q. F. Alves, “Hypotensive effect of canary grass (Phalaris canariensis L.) aqueous extract in rats,” Revista Brasileira de Plantas Medicinais, vol. 10, no. 3, pp. 51–56, 2008.
[17]  F. Martinello, S. M. Soares, J. J. Franco et al., “Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters,” Food and Chemical Toxicology, vol. 44, no. 6, pp. 810–818, 2006.
[18]  J. Mohammadi and P. Naik, “Evaluation of hypoglycemic effect of Morus alba in an animal model,” Indian Journal of Pharmacology, vol. 40, no. 1, pp. 15–18, 2008.
[19]  M. Sharma, M. W. Siddique, M. Shamirn, S. Gyanesh, and K. K. Pillai, “Evaluation of antidiabetic and antioxidant effects of seabuckthorn (Hippophae rhamnoides L.)in streptozotocin-nicotinamide induced diabetic rats,” The Open Conference Proceeding Journal, vol. 2, no. 4, pp. 53–58, 2011.
[20]  Y.-C. Chou, Y.-C. Tsai, C.-M. Chen, S.-M. Chen, and J.-A. Lee, “Determination of lipoprotein lipase activity in post heparin plasma of streptozotocin-induced diabetic rats by high-performance liquid chromatography with flourescence detection,” Biomedical Chromatography, vol. 22, no. 5, pp. 502–510, 2008.
[21]  M. Li, D. H. Kim, P. L. Tsenovoy et al., “Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance,” Diabetes, vol. 57, no. 6, pp. 1526–1535, 2008.
[22]  S.-E. Park, M.-H. Cho, J. K. Lim et al., “A new colorimetric method for determining the isomerization activity of sucrose isomerase,” Bioscience, Biotechnology and Biochemistry, vol. 71, no. 2, pp. 583–586, 2007.
[23]  C. G. Fraga, B. E. Leibovitz, and A. L. Tappel, “Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices. Characterization and comparison with homogenates and microsomes,” Free Radical Biology and Medicine, vol. 4, no. 3, pp. 155–161, 1988.
[24]  S. Bolkent, R. Yanardag, O. Karabulut-Bulan, and B. Yesilyaprak, “Protective role of Melissa officinalis L. extract on liver of hyperlipidemic rats: a morphological and biochemical study,” Journal of Ethnopharmacology, vol. 99, no. 3, pp. 391–398, 2005.
[25]  T. L. Kinney LaPier and K. J. Rodnick, “Effects of aerobic exercise on energy metabolism in the hypertensive rat heart,” Physical Therapy, vol. 81, no. 4, pp. 1006–1017, 2001.
[26]  S. N. Davis and D. K. Granner, “Insulin oral hypoglycaemic agents in the pharmacology of the endocrine pancreas,” in The Pharmacological Basis of Therapeutica, J. G. Hardman, L. G. Limbird, S. Goodman, and A. G. Gilman's, Eds., pp. 1701–1704, McMillan, New York, NY, USA, 10th edition, 1996.
[27]  E. S. Baginiski, P. P. Foa, and B. Zak, Methods of Enzymatic Analysis, vol. 2, Academic Press, New York, 1969, H. U. Bergmeyer, Ed.
[28]  M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[29]  S. Panserat, E. Capilla, J. Gutierrez et al., “Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose,” Comparative Biochemistry and Physiology B, vol. 128, no. 2, pp. 275–283, 2001.
[30]  M. A. Tranulis, B. Christophersen, A. K. Blom, and B. Borrebaek, “Glucose dehydrogenase, glucose-6-phosphate dehydrogenase and hexokinase in liver of rainbow trout (Salmo gairdneri). Effects of starvation and temperature variations,” Comparative Biochemistry and Physiology B, vol. 99, no. 3, pp. 687–691, 1991.
[31]  J. Folch, M. Lees, and G. H. Sloane-Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957.
[32]  P. J. Hissin, J. E. Foley, and L. J. Wardzala, “Mechanism of insulin-resistant glucose transport activity in the enlarged adipose cell of the aged, obese rat. Relative depletion of intracellular glucose transport systems,” Journal of Clinical Investigation, vol. 70, no. 4, pp. 780–790, 1982.
[33]  S. Iwashita, M. Tanida, N. Terui et al., “Direct measurement of renal sympathetic nervous activity in high-fat diet-related hypertensive rats,” Life Sciences, vol. 71, no. 5, pp. 537–546, 2002.
[34]  H.-K. Kim, C. Nelson-Dooley, M. A. Della-Fera et al., “Genistein decreases food intake, body weight, and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice,” Journal of Nutrition, vol. 136, no. 2, pp. 409–414, 2006.
[35]  M. Kim and Y. Kim, “Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet,” Nutrition Research Practice, vol. 4, pp. 191–195, 2010.
[36]  J.-T. Hwang, I.-J. Park, J.-I. Shin et al., “Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase,” Biochemical and Biophysical Research Communications, vol. 338, no. 2, pp. 694–699, 2005.
[37]  X. Huang, A. Vaag, M. Hansson, J. Weng, E. S. A. Laurila, and L. Groop, “Impaired insulin-stimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather than inherited,” The Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 4, pp. 1584–1590, 2000.
[38]  S. Karlander, M. Vranic, and S. Efendic, “Mild type II diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity,” Journal of Clinical Investigation, vol. 81, no. 6, pp. 1953–1961, 1988.
[39]  L. Pari and M. Amarnath Satheesh, “Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes,” Journal of Ethnopharmacology, vol. 91, no. 1, pp. 109–113, 2004.
[40]  T. Gohil, N. Pathak, N. Jivani, V. Devmurari, and J. Patel, “Treatment with extracts of Eugenia jambolana seed and Aegle marmelos leaf extracts prevents hyperglycemia and hyperlipidemia in alloxan induced diabetic rats,” African Journal of Pharmacy and Pharmacology, vol. 4, no. 5, pp. 270–275, 2010.
[41]  S. Karlander, M. Vranic, and S. Efendic, “Mild type II diabetes markedly increases glucose cycling in the postabsorptive state and during glucose infusion irrespective of obesity,” Journal of Clinical Investigation, vol. 81, no. 6, pp. 1953–1961, 1988.
[42]  B. Matkovics, M. Kotorman, I. Sz. Varga, D. Quy Hai, and C. Varga, “Oxidative stress in experimental diabetes induced by streptozotocin,” Acta Physiologica Hungarica, vol. 85, no. 1, pp. 29–38, 1998.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133