全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gene Expression Profiles Underlying Selective T-Cell-Mediated Immunity Activity of a Chinese Medicine Granule on Mice Infected with Influenza Virus H1N1

DOI: 10.1155/2014/976364

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Chinese medicine granule, Shu-Feng-Xuan-Fei (SFXF), is critical for viral clearance in early phase of influenza virus infection. In this study, 72 ICR mice were randomly divided into six groups: normal control group, virus control group, Oseltamivir group, low-dose SFXF, medium-dose SFXF, and high-dose SFXF. Mice were anesthetized and inoculated with 4LD50 of influenza virus A (H1N1) except normal control group. Oseltamivir group received 11.375 mg·kg?1·d?1 Oseltamivir Phosphate. SFXF 3.76, 1.88 and 0.94 g·kg?1·d?1 were administrated to mice in all SFXF groups. Each group was in equal dose of 0.2ml daily for 4 consecutive days. Mice were sacrificed and then total RNA was extracted in lung tissue. Some genes involved in T-cell-mediated immunity were selected by DNA microarray. These candidate genes were verified by Real-Time PCR and western immunoblotting. Compared with virus control group, in Toll-like receptor signaling pathway, 12 virus-altered genes were significantly reduced following medium-dose SFXF treatment. Eighteen antigen processing presentation-associated genes were upregulated by medium-dose SFXF. In the process of T cell receptor signaling pathway, 19 genes were downregulated by medium-dose SFXF treatment. On exploration into effector T cells activation and cytokines, all of altered genes in virus control group were reversed by medium-dose SFXF. Real-time PCR and western immunoblotting showed that the regulation of medium-dose SFXF in IL-4, IFN- , TNF- , IL-1 , TLR7, MyD88, p38, and JNK was superior to Oseltamivir and high-dose SFXF group. Therefore, SFXF granules could reduce influenza infected cells and activation of T cells. 1. Introduction Influenza virus A (H1N1) has emerged every year and remained a public health threat worldwide. Influenza virus not only can damage the epithelial cells, of the lung and airways, but also may lead to complications of extrarespiratory diseases. Today the main option for prevention and treatment is the neuraminidase inhibitor (NAI), Oseltamivir Phosphate, which prolongs influenza virus shedding, decreases the signs of infection, reduces the spread of H1N1pdm influenza virus in the lungs of ferrets, and impedes the development of viral pneumonia [1]. However, the risk of Oseltamivir for virus strain resistance, possible side effects, and financial cost outweigh the small benefits for the prophylaxis and treatment of healthy individuals [2]. To address these issues, other effective alternative treatments of symptomatic influenza, especially Chinese herbal granules, will be additionally needed to have

References

[1]  E. A. Govorkova, B. M. Marathe, A. Prevost, J. E. Rehg, and R. G. Webster, “Assessment of the efficacy of the neuraminidase inhibitor oseltamivir against 2009 pandemic H1N1 influenza virus in ferrets,” Antiviral Research, vol. 91, no. 2, pp. 81–88, 2011.
[2]  M. Barbara, V. P. Karolien, V. Veronique, E. Vermeire, and S. Coenen, “The value of neuraminidase inhibitors for the prevention and treatment of seasonal influenza: a systematic review of systematic reviews,” PLoS ONE, vol. 8, no. 4, Article ID e60348, 2013.
[3]  C. Wang, B. Cao, Q. Q. Liu et al., “Oseltamivir compared with the Chinese traditional therapy maxingshigan-yinqiaosan in the treatment of H1N1 influenza: a randomized trial,” Annals of Internal Medicine, vol. 155, no. 4, pp. 217–225, 2011.
[4]  Y. F. Luo, “Clinical research of professor CHAO En-xiang's experience in treating flu with Chinese herbs,” Beijing Journal of Traditional Chinese Medicine, vol. 31, no. 11, pp. 836–839, 2012.
[5]  L. J. Reed and H. J. Muench, “A simple method of estimating fifty per cent endpoints,” The American Journal of Epidemiology, vol. 27, no. 3, pp. 493–497, 1938.
[6]  T. D. Schmittgen and K. J. Livak, “Analyzing real-time PCR data by the comparative C(T) method,” Nature Protocols, vol. 3, no. 6, pp. 1101–1108, 2008.
[7]  M. Michaelis, J. Geiler, P. Naczk et al., “Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression,” PLoS ONE, vol. 6, no. 5, Article ID e19705, 2011.
[8]  S. Maschalidi, S. H?ssler, F. Blanc et al., “Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation,” PLoS Pathogens, vol. 8, no. 8, Article ID e1002841, 2012.
[9]  S. U. Seo, H. J. Kwon, J. H. Song et al., “MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection,” Journal of Virology, vol. 84, no. 24, pp. 12713–12722, 2010.
[10]  L. Jirmanova, M. L. G. Torchia, N. D. Sarma, P. R. Mittelstadt, and J. D. Ashwell, “Lack of the T cell-specific alternative p38 activation pathway reduces autoimmunity and inflammation,” Blood, vol. 118, no. 12, pp. 3280–3289, 2011.
[11]  T. Yamano, S. Murata, N. Shimbara et al., “Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing,” Journal of Experimental Medicine, vol. 196, no. 2, pp. 185–196, 2002.
[12]  G. Li, J. Zhang, X. Tong, W. Liu, and X. Ye, “Heat shock protein 70 inhibits the activity of influenza a virus ribonucleoprotein and blocks the replication of virus in vitro and in vivo,” PLoS ONE, vol. 6, no. 2, Article ID e16546, 2011.
[13]  J. L. Nayak, K. A. Richards, F. A. Chaves, and A. J. Sant, “Analyses of the specificity of CD4 T cells during the primary immune response to influenza virus reveals dramatic MHC-linked asymmetries in reactivity to individual viral proteins,” Viral Immunology, vol. 23, no. 2, pp. 169–180, 2010.
[14]  H. Ayukawa, T. Matsubara, M. Kaneko, M. Hasegawa, T. Ichiyama, and S. Furukawa, “Expression of CTLA-4 (CD152) in peripheral blood T cells of children with influenza virus infection including encephalopathy in comparison with respiratory syncytial virus infection,” Clinical and Experimental Immunology, vol. 137, no. 1, pp. 151–155, 2004.
[15]  H. Bour-Jordan, J. L. Grogan, Q. Tang, J. A. Auger, R. M. Locksley, and J. A. Bluestone, “CTLA-4 regulates the requirement for cytokine-induced signals in T(H)2 lineage commitment,” Nature Immunology, vol. 4, no. 2, pp. 182–188, 2003.
[16]  H. Schneider, J. Downey, A. Smith et al., “Reversal of the TCR stop signal by CTLA-4,” Science, vol. 313, no. 5795, pp. 1972–1975, 2006.
[17]  S. Gao, L. Song, J. Li et al., “Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK,” Cellular Microbiology, vol. 14, no. 12, pp. 1849–1866, 2012.
[18]  K. Gotoh, Y. Tanaka, A. Nishikimi et al., “Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation,” Journal of Experimental Medicine, vol. 207, no. 4, pp. 721–730, 2010.
[19]  P. Rao, M. S. Hayden, M. Long et al., “IκBβ acts to inhibit and activate gene expression during the inflammatory response,” Nature, vol. 466, no. 7310, pp. 1115–1119, 2010.
[20]  J. M. Clark, K. Aleksiyadis, A. Martin et al., “Inhibitor of κ B epsilon (IκBε) is a non-redundant regulator of c-Rel-dependent gene expression in murine T and B cells,” PLoS ONE, vol. 6, no. 9, Article ID e24504, 2011.
[21]  D. Mucida, M. M. Husain, S. Muroi et al., “Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes,” Nature Immunology, vol. 14, no. 3, pp. 281–289, 2013.
[22]  A. Sundararajan, L. Huan, K. A. Richards et al., “Host differences in influenza-specific CD4 T cell and B cell responses are modulated by viral strain and route of immunization,” PLoS ONE, vol. 7, no. 3, Article ID e34377, 2012.
[23]  S. R. Kumar, S. M. S. Khader, T. K. Kiener, M. Szyporta, and J. Kwang, “Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus,” PLoS ONE, vol. 8, no. 6, Article ID e63856, 2013.
[24]  X. Gu, P. Li, H. Liu, N. Li, S. Li, and T. Sakuma, “The effect of influenza virus A on th1/th2 balance and alveolar fluid clearance in pregnant rats,” Experimental Lung Research, vol. 37, no. 7, pp. 445–451, 2011.
[25]  Q. Liu, L. G. Gu, N. N. Lu, et al., “Protection effect of Shu Feng Xuan Fei Formula and Jie Biao Qing Li Formula on lung injury of mice infected with influenza virus,” China Journal of TCM and Pharmacy, vol. 27, no. 7, pp. 2132–2134, 2013.
[26]  N. N. Lu, L. G. Gu, Q. Liu, et al., “Screening for genes associated with natural killer cell-mediated cytotoxicity in pneumonia mice infected with influenza virus and regulation of two herbal anti-virus formulas,” Chinese Critical Care Medicine, vol. 25, no. 6, pp. 322–326, 2013.
[27]  P. Sithisarn, M. Michaelis, M. Schubert-Zsilavecz, and J. Cinatl Jr., “Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells,” Antiviral Research, vol. 97, no. 1, pp. 41–48, 2013.
[28]  S. Liu, J. Yan, J. Xing, F. Song, Z. Liu, and S. Liu, “Characterization of compounds and potential neuraminidase inhibitors from the n-butanol extract of compound indigowoad root granule using ultrafiltration and liquid chromatography-tandem mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 59, no. 1, pp. 96–101, 2012.
[29]  Z. Liu, Z. Q. Yang, and H. Xiao, “Antiviral activity of the effective monomers from folium isatidis against influenza virus in vivo,” Virologica Sinica, vol. 25, no. 6, pp. 445–451, 2010.
[30]  W. Zhou, H. D. Wang, X. X. Zhu et al., “Improvement of intestinal absorption of forsythoside A and chlorogenic acid by different carboxymethyl chitosan and chito-oligosaccharide, application to Flos Lonicerae-Fructus Forsythiae herb couple preparations,” PLoS ONE, vol. 8, no. 5, Article ID e63348, 2013.
[31]  T. Nagai, Y. Suzuki, T. Tomimori, and H. Yamada, “Antiviral activity of plant flavonoid 5,7,4′-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B virus,” Biological and Pharmaceutical Bulletin, vol. 18, no. 2, pp. 295–299, 1995.
[32]  E. K. Shin, D. H. Kim, H. Lim, H. K. Shin, and J. K. Kim, “The anti-inflammatory effects of a methanolic extract from radix isatidis in murine macrophages and mice,” Inflammation, vol. 33, no. 2, pp. 110–118, 2010.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133