全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical Study of Effects of Jian Ji Ning, a Chinese Herbal Medicine Compound Preparation, in Treating Patients with Myasthenia Gravis via the Regulation of Differential MicroRNAs Expression in Serum

DOI: 10.1155/2014/518942

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myasthenia gravis (MG) is an autoimmune disease, of which the pathogenesis has remained unclear. At present, MG does not have any effective treatment with minor side effects. Jian Ji Ning (JJN), a traditional Chinese medicine formula consisting of 11 medicinal plants, has been used in the treatment of MG for many years. The present study aims to determine if the Chinese herbal medicine JJN could lighten the clinical symptoms of patients with MG via the regulation of differential microRNAs (miRNAs) expression in serum. JJN should be orally administered twice a day for 6 months. In the efficacy evaluation adopting the Quantitative Myasthenia Gravis Score (QMG), we found that JJN could improve the clinical symptoms of patients with MG more effectively. Besides, we found that JJN could regulate differential miRNAs expression in serum of patients with MG. Accordingly, we speculate that the effects of JJN on improving clinical symptoms and blood test indicators of patients with MG may be due to its inhibition of apoptotic pathways of some immune cells and its connection with the regulation of serum miRNAs of some patients. In conclusion, we believe that JJN has a reliable curative effect on patients with MG-induced neuropathologic changes. 1. Introduction Myasthenia gravis (MG) is an antibody-mediated neuromuscular transmission chronic disorder, with an incidence rate of 3–30/1,000,000 people per year. The targets are postsynaptic proteins, mainly involving the skeletal muscle acetylcholine receptor (AchR) and the muscle-specific tyrosine kinase (MuSK) [1, 2]. Some studies have shown that genetic factors played an important role in pathogenesis of MG [3]. In addition, infection with viruses or bacteria, such as poliovirus and Escherichia coli, may be involved in the pathogenesis of MG [4, 5]. However, no report has clearly elucidated the fundamental pathogenesis of MG but merely some accepted hypotheses. The main clinical characteristic of this disease is the volatility of skeletal muscle weakness. At present, anticholinesterase drugs, nonspecific immunosuppressants, thymectomy, and plasmapheresis are main treatments for MG [6–8]. Unfortunately, the abovementioned treatments have some serious side effects, such as cardiac arrhythmia, osteoporosis, and hypotension and cannot inhibit the relapse of symptoms of patients with MG and/or achieve complete remission [9]. Therefore, alternative treatments with higher efficacy and fewer side effects are required. Traditional Chinese medicine (TCM) has been practised for many diseases, including cancer, cardiovascular

References

[1]  V. Zouvelou, M. Rentzos, P. Toulas, and I. Evdokimidis, “AchR-positive myasthenia gravis with MRI evidence of early muscle atrophy,” Journal of Clinical Neuroscience, vol. 19, no. 6, pp. 918–919, 2012.
[2]  A. McGrogan, S. Sneddon, and C. S. de Vries, “The incidence of myasthenia gravis: a systematic literature review,” Neuroepidemiology, vol. 34, no. 3, pp. 171–183, 2010.
[3]  M. Giraud, C. Vandiedonck, and H.-J. Garchon, “Genetic factors in autoimmune myasthenia gravis,” Annals of the New York Academy of Sciences, vol. 1132, no. 10, pp. 180–192, 2008.
[4]  P. Cavalcante, M. Barberis, M. Cannone et al., “Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis,” Neurology, vol. 74, no. 14, pp. 1118–1126, 2010.
[5]  K. Stefansson, M. E. Dieperink, D. P. Richman, and L. S. Marton, “Sharing of epitopes by bacteria and the nicotinic acetylcholine receptor: a possible role in the pathogenesis of myasthenia gravis,” Annals of the New York Academy of Sciences, vol. 505, pp. 451–460, 1987.
[6]  R. Mantegazza, S. Bonanno, G. Camera, and C. Antozzi, “Current and emerging therapies for the treatment of myasthenia gravis,” Neuropsychiatric Disease and Treatment, vol. 7, no. 1, pp. 151–160, 2011.
[7]  E. Tüzün, R. Huda, and P. Christadoss, “Complement and cytokine based therapeutic strategies in myasthenia gravis,” Journal of Autoimmunity, vol. 37, no. 2, pp. 136–143, 2011.
[8]  P. J. Chien, J. H. Yeh, H. C. Chiu et al., “Inhibition of peripheral blood natural killer cell cytotoxicity in patients with myasthenia gravis treated with plasmapheresis,” European Journal of Neurology, vol. 18, no. 11, pp. 1350–1357, 2011.
[9]  M. García-Carrasco, R. O. Escárcega, S. Fuentes-Alexandro, C. Riebeling, and R. Cervera, “Therapeutic options in autoimmune myasthenia gravis,” Autoimmunity Reviews, vol. 6, no. 6, pp. 373–378, 2007.
[10]  H. Lin, J. Liu, and Y. Zhang, “Developments in cancer prevention and treatment using traditional Chinese medicine,” Frontiers of Medicine, vol. 5, no. 2, pp. 127–133, 2011.
[11]  Z. L. Liu, J. P. Liu, A. L. Zhang et al., “Chinese herbal medicines for hypercholesterolemia,” Cochrane Database of Systematic Reviews, vol. 6, no. 7, Article ID CD008305, 2011.
[12]  D. Y. He and S. M. Dai, “Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine,” Frontiers in Pharmacology, vol. 10, no. 2, 2011.
[13]  Y. Sun, Z. Zang, X. Xu et al., “Experimental investigation of the immunoregulatory and anti-inflammatory effects of the traditional Chinese medicine “Li-Yan Zhi-Ke Granule” for relieving chronic pharyngitis in rats,” Molecular Biology Reports, vol. 38, no. 1, pp. 199–203, 2011.
[14]  W. Pan, S. Kwak, Y. Liu et al., “Traditional chinese medicine improves activities of daily living in parkinson's disease,” Parkinson's Disease, vol. 2011, Article ID 789506, 7 pages, 2011.
[15]  J.-S. Zhang, W. Sun, P. Liu, H.-W. Liu, and T.-N. Yi, “Influence of Huangqi compound on ultrastructure of neuromuscular junction in model rat of experimental autoimmune myasthenia gravis,” Chinese Journal of Clinical Rehabilitation, vol. 10, no. 35, pp. 20–22, 2006.
[16]  P. Liu, J. S. Zhang, B. Han, et al., “The regulation effects of Huangqi compound on the level of IFN-Y and it's mRNA in myasthenia gravis patients,” Chinese Archives of Traditional Chinese Medicine, vol. 22, no. 11, pp. 2021–2022, 2004.
[17]  P. Liu, X. F. Ding, Y. Y. Zhang, et al., “Effect of Jianji Ning recipe on the differential expressive proteins in thymus with trial autoimmune myasthenia gravis,” Chinese Archives of Traditional Chinese Medicine, vol. 26, no. 1, pp. 6–69, 2008.
[18]  P. Liu, X.-F. Ding, Y.-Y. Zhang, and J. Qiao, “Modulation of Jianjining recipe on differential protein expression in rats with experimental autoimmune myasthenia gravis,” Journal of Chinese Integrative Medicine, vol. 5, no. 6, pp. 642–646, 2007.
[19]  P. Liu, J. S. Zhang, F. Zheng, et al., “The Regulating effects of Huangqi compound acetylcholine receptor antibody in patients with myasthenia gravis,” Chinese Journal of Neuroimmunology and Neurology, vol. 12, no. 2, pp. 76–78, 2005.
[20]  X. Sun, G. H. Niu, and J. S. Zhang, “Effect of compound Astragalus membranaceus on Thl, Th2, Tcl and Tc2 subsets in peripheral blood of patients with myasthenia gravis,” Medical Journal of the Chinese People's Armed Police Forces, vol. 21, no. 5, pp. 420–422, 2010.
[21]  G.-H. Niu, X. Sun, and C.-M. Zhang, “Effect of compound astragalus recipe on lymphocyte subset, immunoglobulin and complements in patients with myasthenia gravia,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 29, no. 4, pp. 305–308, 2009.
[22]  W. J. Bao, J. S. Zhang, and W. J. Qiao, “The study of Huangqi compound treatment on 73 cases of myasthenia gravis,” Guangming Journal of Chinese Medicine, vol. 23, no. 2, pp. 208–209, 2008.
[23]  W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by MicroRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008.
[24]  E. van Rooij and E. N. Olson, “MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2369–2376, 2007.
[25]  L. Jiang, Z. Cheng, S. Qiu, et al., “Altered let-7 expression in myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells,” International Immunopharmacology, vol. 14, no. 2, pp. 217–223, 2012.
[26]  K. E. Osserman, Myasthenia Gravis, Grune & Stratton Group, New York, NY, USA, 1958.
[27]  H. Z. Chen, Practical Internal Medicine, People's Medical Publishing Press, Beijing, China, 2001.
[28]  B. Y. Zhang, Traditional Chinese Internal Medicine, Shanghai Science and Technology Press, Shanghai, China, 1985.
[29]  Chinese Immunological Society of Neuroimmunology Branch, Chinese Medical Association Society of Neuropathy Branch of Neuroimmunology Unit, “Myasthenia gravis diagnosis and treatment of the Chinese expert consensus,” Chinese Journal of Neuroimmunology and Neurology, vol. 19, no. 6, pp. 401–408, 2012.
[30]  T. Hirano, K. Oka, Y. Umezawa, M. Hirata, T. Oh-i, and M. Koga, “Individual pharmacodynamics assessed by antilymphocyte action predicts clinical cyclosporine efficacy in psoriasis,” Clinical Pharmacology and Therapeutics, vol. 63, no. 4, pp. 465–470, 1998.
[31]  G. W. Wright and R. M. Simon, “A random variance model for detection of differential gene expression in small microarray experiments,” Bioinformatics, vol. 19, no. 18, pp. 2448–2455, 2003.
[32]  H. Yang, N. Crawford, L. Lukes, R. Finney, M. Lancaster, and K. W. Hunter, “Metastasis predictive signature profiles pre-exist in normal tissues,” Clinical and Experimental Metastasis, vol. 22, no. 7, pp. 593–603, 2005.
[33]  R. Clarke, H. W. Ressom, A. Wang et al., “The properties of high-dimensional data spaces: implications for exploring gene and protein expression data,” Nature Reviews Cancer, vol. 8, no. 1, pp. 37–49, 2008.
[34]  S. Xiao, D. Mo, Q. Wang et al., “Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling,” BMC Genomics, vol. 11, no. 1, article 544, 2010.
[35]  L. D. Miller, P. M. Long, L. Wong, S. Mukherjee, L. M. McShane, and E. T. Liu, “Optimal gene expression analysis by microarrays,” Cancer Cell, vol. 2, no. 5, pp. 353–361, 2002.
[36]  M. F. Ramoni, P. Sebastiani, and I. S. Kohane, “Cluster analysis of gene expression dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 14, pp. 9121–9126, 2002.
[37]  T. Schlitt, K. Palin, J. Rung et al., “From gene networks to gene function,” Genome Research, vol. 13, no. 12, pp. 2568–2576, 2003.
[38]  D. Dupuy, N. Bertin, C. A. Hidalgo et al., “Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans,” Nature Biotechnology, vol. 25, no. 6, pp. 663–668, 2007.
[39]  D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009.
[40]  D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists,” Nucleic Acids Research, vol. 37, no. 1, pp. 1–13, 2009.
[41]  M.-P. Gustin, C. Z. Paultre, J. Randon, G. Bricca, and C. Cerutti, “Functional meta-analysis of double connectivity in gene coexpression networks in mammals,” Physiological Genomics, vol. 34, no. 1, pp. 34–41, 2008.
[42]  Y. J. Wang, Neurology Clinical Rating Scale, Beijing China Friendship Publishing Company Press, Beijing, China, 2005.
[43]  G. A. Calin, M. Ferracin, A. Cimmino et al., “A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 353, no. 17, pp. 1793–1801, 2005.
[44]  M. Eder and M. Scherr, “MicroRNA and lung cancer,” The New England Journal of Medicine, vol. 352, no. 23, pp. 2446–2448, 2005.
[45]  B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005.
[46]  E. Sonkoly, M. St?hle, and A. Pivarcsi, “MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation,” Seminars in Cancer Biology, vol. 18, no. 2, pp. 131–140, 2008.
[47]  W. Jia, W.-Y. Gao, Y.-Q. Yan et al., “The rediscovery of ancient Chinese herbal formulas,” Phytotherapy Research, vol. 18, no. 8, pp. 681–686, 2004.
[48]  L. Chen, R. Liu, Z.-P. Liu, M. Li, and K. Aihara, “Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers,” Scientific Reports, vol. 2, article 342, 2012.
[49]  F. E. Dewey, M. V. Perez, M. T. Wheeler et al., “Gene coexpression network topology of cardiac development, hypertrophy, and failure,” Circulation, vol. 4, no. 1, pp. 26–35, 2011.
[50]  A. Krek, D. Grün, M. N. Poy et al., “Combinatorial MicroRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005.
[51]  T. Jér?me, P. Laurie, B. Louis, and C. Pierre, “Enjoy the silence: the story of let-7 MicroRNA and cancer,” Current Genomics, vol. 8, no. 4, pp. 229–233, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133