全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oral Glutamine Supplement Inhibits Ascites Formation in Peritoneal Carcinomatosis Mouse Model

DOI: 10.1155/2013/814054

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Peritoneal carcinomatosis (PC) accompanied with ascites formation causes several distressing symptoms, resulting in poor quality of life. Methods. Twenty BALB/c nude mice generated by direct orthotopic injection of human pancreatic cancer PANC-1 cells were randomized to receive either a stock laboratory diet or a stock diet supplemented with glutamine. Half of the mice were sacrificed at day 76 to measure the amount of ascitic fluid and pancreatic tumor volume. The remaining mice were subject to survival analysis. Serum albumin levels were estimated every 2 weeks. Results. At day 76, the average amount of ascitic fluid measured in the control group was ?mL compared to ?mL from the glutamine-supplemented mice ( ). The volume of pancreatic tumor was ?cm3 in the control group and ?cm3 in glutamine-supplemented mice ( ). The mean survival time of glutamine-supplemented mice was prolonged from to days ( ). Mean serum albumin levels were higher in the glutamine-supplemented group. Conclusions. This preclinical study showed that oral supplementation of glutamine may provide ascites-reducing activity in pancreatic cancer patients with PC, via a cell-mediated immunity-independent mechanism. 1. Introduction Peritoneal carcinomatosis (PC) is well established as a terminal feature of advanced primary or secondary neoplasms involving the peritoneum. PC is a challenging complication associated with a poor prognosis and limited treatment options [1]. Locally advanced pancreatic cancer is one of the most common diseases causing PC and subsequent ascites formation. Terminal stage cancer patients with PC have an estimated median survival of 3–6 months [2]. At this terminal stage, quality of life, rather than the prolonging of survival, is considered the most crucial issue in palliative care. Nevertheless, the importance of life-prolonging palliative care is gaining recognition in the new era of cancer management. Because PC-associated ascites develops due to hydrostatic pressure factors rather than osmotic factors, the current management of the condition includes abdominal paracentesis, diuretics administration, and salt restriction. Nutrition support represents an alternative strategy to improve the general well-being after management for ascites. However, the value of nutrition support in patients with PC remains controversial with inconclusive survival benefits [3] and concerns that it may accelerate tumor growth [4, 5]. The pathogenesis of ascites formation in PC is unclear. It is thought to be a correlation between endothelial cells, angiogenesis, and

References

[1]  L. Santarpia, L. Alfonsi, F. Pasanisi, C. de Caprio, L. Scalfi, and F. Contaldo, “Predictive factors of survival in patients with peritoneal carcinomatosis on home parenteral nutrition,” Nutrition, vol. 22, no. 4, pp. 355–360, 2006.
[2]  J. M. Davies and B. O'Neil, “Peritoneal carcinomatosis of gastrointestinal origin: natural history and treatment options,” Expert Opinion on Investigational Drugs, vol. 18, no. 7, pp. 913–919, 2009.
[3]  P. Good, J. Cavenagh, M. Mather, and P. Ravenscroft, “Medically assisted nutrition for palliative care in adult patients,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006274, 2008.
[4]  M. H. Torosian, “Stimulation of tumor growth by nutrition support,” Journal of Parenteral and Enteral Nutrition, vol. 16, supplement 6, pp. 72S–75S, 1992.
[5]  M. H. Torosian and R. B. Donoway, “Total parenteral nutrition and tumor metastasis,” Surgery, vol. 109, no. 5, pp. 597–601, 1991.
[6]  J. K. Min, Y. M. Kim, S. W. Kim et al., “TNF-related activation-induced cytokine enhances leukocyte adhesiveness: Induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-κB activation in endothelial cells,” The Journal of Immunology, vol. 175, no. 1, pp. 531–540, 2005.
[7]  S. Ghosh, S. Roy, M. Banerjee, and P. Maity, “Modulation of tumor induced angiogenesis in Ehrlich ascites tumor,” Journal of Experimental and Clinical Cancer Research, vol. 23, no. 4, pp. 681–690, 2004.
[8]  C. L. Yeh, C. S. Hsu, S. C. Chen, M. H. Pai, and S. L. Yeh, “Effect of glutamine on cellular adhesion molecule expression and leukocyte transmigration in endothelial cells stimulated by plasma or peritoneal drain fluid from a surgical patient,” Shock, vol. 25, no. 3, pp. 236–240, 2006.
[9]  J. M. Péron, C. Bureau, P. Gourdy et al., “Treatment of experimental murine pancreatic peritoneal carcinomatosis with fibroblasts genetically modified to express IL12: a role for peritoneal innate immunity,” Gut, vol. 56, no. 1, pp. 107–114, 2007.
[10]  O. Stoeltzing, S. A. Ahmad, W. Liu et al., “Angiopoietin-1 inhibits tumour growth and ascites formaticn in a murine model of peritoneal carcinomatosis,” British Journal of Cancer, vol. 87, no. 10, pp. 1182–1187, 2002.
[11]  M. Co?ffier, O. Miralles-Barrachina, F. le Pessot et al., “Influence of glutamine on cytokine production by human gut in vitro,” Cytokine, vol. 13, no. 3, pp. 148–154, 2001.
[12]  Y. C. Hou, C. S. Hsu, C. L. Yeh, W. C. Chiu, M. H. Pai, and S. L. Yeh, “Effects of glutamine on adhesion molecule expression and leukocyte transmigration in endothelial cells exposed to arsenic,” Journal of Nutritional Biochemistry, vol. 16, no. 11, pp. 700–704, 2005.
[13]  K. S. Kuhn, M. Muscaritoli, P. Wischmeyer, and P. Stehle, “Glutamine as indispensable nutrient in oncology: experimental and clinical evidence,” European Journal of Nutrition, vol. 49, no. 4, pp. 197–210, 2010.
[14]  V. K. Todorova, S. A. Harms, Y. Kaufmann et al., “Effect of dietary glutamine on tumor glutathione levels and apoptosis-related proteins in DMBA-induced breast cancer of rats,” Breast Cancer Research and Treatment, vol. 88, no. 3, pp. 247–256, 2004.
[15]  V. K. Todorova, S. A. Harms, S. Luo, Y. Kaufmann, K. B. Babb, and V. S. Klimberg, “Oral glutamine (AES-14) supplementation inhibits PI-3K/Akt signaling in experimental breast cancer,” Journal of Parenteral and Enteral Nutrition, vol. 27, no. 6, pp. 404–410, 2003.
[16]  M. M. Rogero, M. C. Borges, I. A. de Castro, I. S. Pires, P. Borelli, and J. Tirapegui, “Effects of dietary glutamine supplementation on the body composition and protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guerin,” Nutrients, vol. 3, no. 9, pp. 792–804, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133