全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Expression of Potential Cancer Stem Cell Marker ABCG2 is Associated with Malignant Behaviors of Hepatocellular Carcinoma

DOI: 10.1155/2013/782581

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Despite improvement in treatment, the prognosis of hepatocellular carcinoma (HCC) remains disastrous. Cancer stem cells (CSCs) may be responsible for cancer malignant behaviors. ATP-binding cassette, subfamily G, member 2 (ABCG2) is widely expressed in both normal and cancer stem cells and may play an important role in cancer malignant behaviors. Methods. The expression of ABCG2 in HCC tissues and SMMC-7721 cells was examined, and the relevance of ABCG2 expression with clinical characteristics was analyzed. ABCG2+ and ABCG2? cells were sorted, and the potential of tumorigenicity was determined. Expression level of ABCG2 was manipulated by RNA interference and overexpression. Malignant behaviors including proliferation, drug resistance, migration, and invasion were studied in vitro. Results. Expression of ABCG2 was found in a minor group of cells in HCC tissues and cell lines. ABCG2 expression showed tendencies of association with unfavorable prognosis factors. ABCG2 positive cells showed a superior tumorigenicity. Upregulation of ABCG2 enhanced the capacity of proliferation, doxorubicin resistance, migration, and invasion potential, while downregulation of ABCG2 significantly decreased these malignant behaviors. Conclusion. Our results indicate that ABCG2 is a potential CSC marker for HCC. Its expression level has a close relationship with tumorigenicity, proliferation, drug resistance, and metastasis ability. 1. Introduction Hepatocellular carcinoma (HCC) is the fifth common cancer in men and the seventh common in women worldwide. Due to its extremely poor prognosis, the deaths and newly diagnosed cases each year are almost equal [1]. Currently, therapeutic strategies for HCC are developing; however, potential curative methods remain surgical resection, transplantation, and radiofrequency ablation [2]. However, according to the widely accepted Barcelona Clinic Liver Cancer (BCLC) staging system, those curative methods are generally limited to early-stage HCC patients, whereas more patients are found with intermediate or advanced stage tumors when diagnosed, thus are not eligible for curative treatment [3]. The effectiveness of noncurative therapies including transcatheter arterial chemoembolization (TACE) and Sorafenib are unsatisfactory, which can only improve overall survival by several months [4]. The dilemma of HCC treatment is largely contributed by the highly malignant behavior of HCC, including early intrahepatic/systemic metastasis and multidrug resistance. The theory of cancer stem cells (CSCs) is proposed in recent years.

References

[1]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[2]  J. Bruix and M. Sherman, “Management of hepatocellular carcinoma: an update,” Hepatology, vol. 53, no. 3, pp. 1020–1022, 2011.
[3]  A. Forner, M. E. Reig, C. Rodriguez de Lope, and J. Bruix, “Current strategy for staging and treatment: the BCLC update and future prospects,” Seminars in Liver Disease, vol. 30, no. 1, pp. 61–74, 2010.
[4]  A. Forner, J. M. Llovet, and J. Bruix, “Hepatocellular carcinoma,” The Lancet, vol. 379, no. 9822, pp. 1245–1255, 2012.
[5]  C. T. Jordan, M. L. Guzman, and M. Noble, “Cancer stem cells,” The New England Journal of Medicine, vol. 355, no. 12, pp. 1253–1261, 2006.
[6]  J. A. Magee, E. Piskounova, and S. J. Morrison, “Cancer stem cells: impact, heterogeneity, and uncertainty,” Cancer Cell, vol. 21, no. 3, pp. 283–296, 2012.
[7]  A. W. Hamburger and S. E. Salmon, “Primary bioassay of human tumor stem cells,” Science, vol. 197, no. 4302, pp. 461–463, 1977.
[8]  M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003.
[9]  A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, “Prospective identification of tumorigenic prostate cancer stem cells,” Cancer Research, vol. 65, no. 23, pp. 10946–10951, 2005.
[10]  Z. F. Yang, D. W. Ho, M. N. Ng et al., “Significance of CD90+ cancer stem cells in human liver cancer,” Cancer Cell, vol. 13, no. 2, pp. 153–166, 2008.
[11]  B. L. Abbott, A.-M. Colapietro, Y. Barnes, F. Marini, M. Andreeff, and B. P. Sorrentino, “Low levels of ABCG2 expression in adult AML blast samples,” Blood, vol. 100, no. 13, pp. 4594–4601, 2002.
[12]  S. Zhou, J. D. Schuetz, K. D. Bunting et al., “The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype,” Nature Medicine, vol. 7, no. 9, pp. 1028–1034, 2001.
[13]  T. Chiba, K. Kita, Y.-W. Zheng et al., “Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties,” Hepatology, vol. 44, no. 1, pp. 240–251, 2006.
[14]  S. Zhou, J. J. Morris, Y. Barnes, L. Lan, J. D. Schuetz, and B. P. Sorrentino, “Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12339–12344, 2002.
[15]  S. E. Salmon, A. W. Hamburger, and B. Soehnlen, “Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs,” The New England Journal of Medicine, vol. 298, no. 24, pp. 1321–1327, 1978.
[16]  Q. Jia, X. Zhang, T. Deng, et al., “Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells,” Cellular Reprogramming, vol. 15, no. 2, pp. 143–150, 2013.
[17]  C. Shi, R. Tian, M. Wang et al., “CD44+ CD133+ population exhibits cancer stem cell-like characteristics in human gallbladder carcinoma,” Cancer Biology & Therapy, vol. 10, no. 11, pp. 1182–1190, 2010.
[18]  G. H. Qiang, D. C. Yu, X. W. Ding, et al., “Expression of ABCG2 in human liver cancer cell lines and its related functions,” Chinese Journal, vol. 19, pp. 146–150, 2012.
[19]  L. H. Sobin and C. H. Wittekind, TNM Classification of Malignant Tumors, Wiley-Blackwell, New York, NY, USA, 6th edition, 2002.
[20]  V. Mazzaferro, E. Regalia, R. Doci et al., “Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis,” The New England Journal of Medicine, vol. 334, no. 11, pp. 693–699, 1996.
[21]  W. H. Luo, C. P. Jiang, and Y. T. Ding, “Construcion and identification of eukaryotic expression vector pcDNA3. 1 (+)-ABCG2,” Journal of Hepatobiliary Surgery, vol. 21, pp. 137–140, 2013.
[22]  F. Wu, L.-Y. Yang, Y.-F. Li, D.-P. Ou, D.-P. Chen, and C. Fan, “Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma,” Hepatology, vol. 50, no. 6, pp. 1839–1850, 2009.
[23]  J. M. Llovet, M. Schwartz, and V. Mazzaferro, “Resection and liver transplantation for hepatocellular carcinoma,” Seminars in Liver Disease, vol. 25, no. 2, pp. 181–200, 2005.
[24]  J. M. Llovet, S. Ricci, V. Mazzaferro et al., “Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, no. 4, pp. 378–390, 2008.
[25]  T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001.
[26]  N. Oishi and X. W. Wang, “Novel therapeutic strategies for targeting liver cancer stem cells,” International Journal of Biological Sciences, vol. 7, no. 5, pp. 517–535, 2011.
[27]  M. Dean, T. Fojo, and S. Bates, “Tumour stem cells and drug resistance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 275–284, 2005.
[28]  Y. F. Sun, Y. Xu, X. R. Yang, et al., “Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection,” Hepatology, vol. 57, pp. 1458–1468, 2013.
[29]  Y. C. Ma, J. Y. Yang, and L. N. Yan, “Relevant markers of cancer stem cells indicate a poor prognosis in hepatocellular carcinoma patients: a meta-analysis,” European Journal of Gastroenterology and Hepatology, vol. 25, no. 9, pp. 1007–1016, 2013.
[30]  Z. Benderra, A.-M. Faussat, L. Sayada et al., “Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias,” Clinical Cancer Research, vol. 10, no. 23, pp. 7896–7902, 2004.
[31]  N. Kamiyama, S. Takagi, C. Yamamoto et al., “Expression of ABC transporters in human hepatocyte carcinoma cells with cross-resistance to epirubicin and mitoxantrone,” Anticancer Research, vol. 26, no. 2, pp. 885–888, 2006.
[32]  S. Tsunoda, T. Okumura, T. Ito et al., “ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma,” Oncology, vol. 71, no. 3-4, pp. 251–258, 2007.
[33]  K. Yoh, G. Ishii, T. Yokose et al., “Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer,” Clinical Cancer Research, vol. 10, no. 5, pp. 1691–1697, 2004.
[34]  D. Hang, H.-C. Dong, T. Ning, B. Dong, D.-L. Hou, and W.-G. Xu, “Prognostic value of the stem cell markers CD133 and ABCG2 expression in esophageal squamous cell carcinoma,” Diseases of the Esophagus, vol. 25, pp. 638–644, 2012.
[35]  O. M. Omran, “The prognostic value of breast cancer resistance protein (BCRB/ABCG2) expression in breast carcinomas,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 31, pp. 367–376, 2012.
[36]  L. Xiang, P. Su, S. Xia et al., “ABCG2 is associated with HER-2 Expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma,” Diagnostic Pathology, vol. 6, no. 1, article 90, 2011.
[37]  Y. Chen, D. Yu, H. Zhang, et al., “CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells,” International Journal of Biological Sciences, vol. 8, pp. 992–1004, 2012.
[38]  G.-M. Shi, Y. Xu, J. Fan et al., “Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 11, pp. 1155–1163, 2008.
[39]  C. H. Sukowati, N. Rosso, D. Pascut, et al., “Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma,” BMC Gastroenterol, vol. 12, article 160, 2012.
[40]  J. Yang, D. Liao, C. Chen, et al., “Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway,” Stem Cells, vol. 31, pp. 248–258, 2013.
[41]  J. Zhou, F. Chen, J. Xiao et al., “Enhanced functional properties of corneal epithelial cells by coculture with embryonic stem cells via the integrin β1-FAK-PI3K/Akt pathway,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 8, pp. 1168–1177, 2011.
[42]  O. Morimoto, H. Nagano, M. Sakon et al., “Diagnosis of intrahepatic metastasis and multicentric carcinogenesis by microsatellite loss of heterozygosity in patients with multiple and recurrent hepatocellular carcinomas,” Journal of Hepatology, vol. 39, no. 2, pp. 215–221, 2003.
[43]  P. A. Torzilli, J. W. Bourne, T. Cigler, et al., “A new paradigm for mechanobiological mechanisms in tumor metastasis,” Seminars in Cancer Biology, vol. 22, pp. 385–395, 2012.
[44]  P. M. Wilson, M. J. LaBonte, and H. J. Lenz, “Assessing the in vivo efficacy of biologic antiangiogenic therapies,” Cancer Chemotherapy and Pharmacology, vol. 71, pp. 1–12, 2013.
[45]  K. Chen, Y. H. Huang, and J. L. Chen, “Understanding and targeting cancer stem cells: therapeutic implications and challenges,” Acta Pharmacologica Sinica, vol. 34, pp. 732–740, 2013.
[46]  D. Horst, S. K. Scheel, S. Liebmann et al., “The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer,” Journal of Pathology, vol. 219, no. 4, pp. 427–434, 2009.
[47]  D. Naor, S. B. Wallach-Dayan, M. A. Zahalka, and R. V. Sionov, “Involvement of CD44, a molecule with a thousand faces, in cancer dissemination,” Seminars in Cancer Biology, vol. 18, no. 4, pp. 260–267, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413