全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Increasing Prominent Disease of Klebsiella pneumoniae Liver Abscess: Etiology, Diagnosis, and Treatment

DOI: 10.1155/2013/258514

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. During the past two decades, Klebsiella pneumoniae (K. pneumoniae) had surpassed Escherichia coli (E. coli) as the predominant isolate from patients with pyogenic liver abscess (PLA) in Asian countries, the United States, and Europe, and it tended to spread globally. Since the clinical symptom is atypical, the accurate and effective diagnosis and treatment of K. pneumoniae liver abscesses (KLAs) are very necessary. Methods. Here, we have comprehensively clarified the epidemiology and pathogenesis of KLA, put emphases on the clinical presentations especially the characteristic radiographic findings of KLA, and thoroughly elucidated the most effective antibiotic strategy of KLA. Results. K1 serotype is strongly associated with KLA especially in diabetic patients. Computed tomography (CT) and ultrasound (US) were two main diagnostic methods of KLA in the past. Most of KLAs have solitary, septal lobular abscesses in the right lobe of liver, and they are mainly monomicrobial. Broad-spectrum antibiotics combined with the US-guided percutaneous drainage of liver abscesses can increase their survival rates, but surgical intervention still has its irreplaceable position. Conclusion. The imaging features contribute to the early diagnosis, and the percutaneous intervention combined with an aminoglycoside plus either an extended-spectrum betalactam or a second- or third-generation cephalosporin is a timely and effective treatment of KLA. 1. Introduction Pyogenic liver abscess (PLA) is a life-threatening infectious disease. Before the 1980s, E. coli was the most common pathogen that caused PLA and was mostly polymicrobial. However, during the past two decades, highly virulent strains of K. pneumoniae had emerged as a predominant cause of PLA in Asian countries and areas [1–5], the United States [6–11], and Europe [12–14], especially Taiwan [2, 15–22], and it tended to spread globally [23–26]. Recent researches have shown, unlike other bacterial-induced PLAs (Non-KLAs) which are mostly associated with biliary tract disorders [19, 27–30], that K. pneumoniae liver abscesses (KLAs) are often cryptogenic [3, 6, 17, 27, 29–34]. Metastatic meningitis or endophthalmitis is often complicated with KLA 10%–45% [9, 16, 30, 35–38], and most of KLA patients had diabetes mellitus [1, 15, 16, 22, 27, 29, 30, 35, 38, 39]. KLA has the characteristic radiographic findings which are different from those of Non-KLA [1, 6, 22, 30, 34, 38, 40, 41]. Up to date, the combination of systemic antibiotics and percutaneous drainage has become the treatment of choice for the

References

[1]  J. Li, Y. Fu, J. Y. Wang et al., “Early diagnosis and therapeutic choice of Klebsiella pneumoniae liver abscess,” Frontiers of Medicine in China, vol. 4, no. 3, pp. 308–316, 2010.
[2]  L. K. Siu, C. Fung, F. Chang et al., “Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan,” Journal of Clinical Microbiology, vol. 49, no. 11, pp. 3761–3765, 2011.
[3]  D. R. Chung, H. Lee, M. H. Park et al., “Fecal carriage of serotype K1 Klebsiella pneumoniae ST23 strains closely related to liver abscess isolates in Koreans living in Korea,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 31, no. 4, pp. 481–486, 2011.
[4]  D. S. Chan, S. Archuleta, R. M. Llorin, D. C. Lye, and D. Fisher, “Standardized outpatient management of Klebsiella pneumoniae liver abscesses,” International Journal of Infectious Diseases, vol. 17, no. 3, pp. e185–e188, 2013.
[5]  H. Hagiya, Y. Kuroe, H. Nojima et al., “Emphysematous liver abscesses complicated by septic pulmonary emboli in patients with diabetes: two cases,” Internal Medicine, vol. 52, no. 1, pp. 141–145, 2013.
[6]  J. Rahimian, T. Wilson, V. Oram, and R. S. Holzman, “Pyogenic liver abscess: recent trends in etiology and mortality,” Clinical Infectious Diseases, vol. 39, no. 11, pp. 1654–1659, 2004.
[7]  E. R. Lederman and N. F. Crum, “Pyogenic liver abscess with a focus on Klebsiella pneumoniae as a primary pathogen: an emerging disease with unique clinical characteristics,” The American Journal of Gastroenterology, vol. 100, no. 2, pp. 322–331, 2005.
[8]  P. Golia and M. Sadler, “Pyogenic liver abscess: Klebsiella as an emerging pathogen,” Emergency Radiology, vol. 13, no. 2, pp. 87–88, 2006.
[9]  M. Pastagia and V. Arumugam, “Klebsiella pneumoniae liver abscesses in a public hospital in Queens, New York,” Travel Medicine and Infectious Disease, vol. 6, no. 4, pp. 228–233, 2008.
[10]  J. V. Pope, D. L. Teich, P. Clardy, and D. C. McGillicuddy, “Klebsiella pneumoniae liver abscess: an emerging problem in North America,” Journal of Emergency Medicine, vol. 41, no. 5, pp. e103–e105, 2011.
[11]  D. D. Sachdev, M. T. Yin, J. D. Horowitz, S. K. Mukkamala, S. E. Lee, and A. J. Ratner, “Klebsiella pneumoniae K1 liver abscess and septic endophthalmitis in a U.S. resident,” Journal of Clinical Microbiology, vol. 51, no. 3, pp. 1049–1051, 2013.
[12]  X. Nassif, J. M. Fournier, J. Arondel, and P. J. Sansonetti, “Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor,” Infection and Immunity, vol. 57, no. 2, pp. 546–552, 1989.
[13]  S. K. Sobirk, C. Struve, and S. G. Jacobsson, “Primary Klebsiella pneumoniae liver abscess with metastatic spread to lung and eye, a North-european case report of an emerging syndrome,” Open Microbiology Journal, vol. 4, pp. 5–7, 2010.
[14]  R. Moore, D. O. 'Shea, T. Geoghegan, P. W. Mallon, and G. Sheehan, “Community-acquired Klebsiella pneumoniae liver abscess: an emerging infection in Ireland and Europe,” Infection, vol. 41, no. 1, pp. 681–686, 2013.
[15]  C. P. Fung, F. Y. Chang, S. C. Lee et al., “A global emerging disease of Klebsiella pneumoniae liver abscess: Is serotype K1 an important factor for complicated endophthalmitis?” Gut, vol. 50, no. 3, pp. 420–424, 2002.
[16]  J. H. Wang, Y. Liu, S. S. Lee et al., “Primary liver abscess due to Klebsiella pneumoniae in Taiwan,” Clinical Infectious Diseases, vol. 26, no. 6, pp. 1434–1438, 1998.
[17]  S. C. Chang, C. T. Fang, P. R. Hsueh, Y. C. Chen, and K. T. Luh, “Klebsiella pneumoniae isolates causing liver abscess in Taiwan,” Diagnostic Microbiology and Infectious Disease, vol. 37, no. 4, pp. 279–284, 2000.
[18]  C. T. Fang, S. Y. Lai, W. C. Yi, P. R. Hsueh, K. L. Liu, and S. C. Chang, “Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess,” Clinical Infectious Diseases, vol. 45, no. 3, pp. 284–293, 2007.
[19]  F. C. Tsai, Y. T. Huang, L. Y. Chang, and J. T. Wang, “Pyogenic liver abscess as endemic disease, Taiwan,” Emerging Infectious Diseases, vol. 14, no. 10, pp. 1592–1600, 2008.
[20]  C. P. Fung, Y. T. Lin, J. C. Lin et al., “Klebsiella pneumoniae in gastrointestinal tract and pyogenic liver abscess,” Emerging Infectious Diseases, vol. 18, no. 8, pp. 1322–1325, 2012.
[21]  J. J. Keller, M. C. Tsai, C. C. Lin, Y. C. Lin, and H. C. Lin, “Risk of infections subsequent to pyogenic liver abscess: a nationwide population-based study,” Clinical Microbiology and Infection, vol. 19, no. 8, pp. 717–722, 2013.
[22]  Y. T. Lin, F. D. Wang, P. F. Wu, and C. P. Fung, “Klebsiella pneumoniae liver abscess in diabetic patients: association of glycemic control with the clinical characteristics,” BMC Infectious Diseases, vol. 13, no. 1, article 56, 2013.
[23]  Y. Keynan, J. A. Karlowsky, T. Walus, and E. Rubinstein, “Pyogenic liver abscess caused by hypermucoviscous Klebsiella pneumoniae,” Scandinavian Journal of Infectious Diseases, vol. 39, no. 9, pp. 828–830, 2007.
[24]  J. F. Turton, H. Englender, S. N. Gabriel, S. E. Turton, M. E. Kaufmann, and T. L. Pitt, “Genetically similar isolates of Klebsiella pneumoniae serotype K1 causing liver abscesses in three continents,” Journal of Medical Microbiology, vol. 56, no. 5, pp. 593–597, 2007.
[25]  T. C. Y. Pang, T. Fung, J. Samra, T. J. Hugh, and R. C. Smith, “Pyogenic liver abscess: an audit of 10 years' experience,” World Journal of Gastroenterology, vol. 17, no. 12, pp. 1622–1630, 2011.
[26]  A. Vila, A. Cassata, H. Pagella et al., “Appearance of Klebsiella pneumoniae liver abscess syndrome in Argentina: case report and review of molecular mechanisms of pathogenesis,” Open Microbiology Journal, vol. 5, pp. 107–113, 2011.
[27]  S. C. Chen, W. Wu, C. H. Yeh et al., “Comparison of Escherichia coli and Klebsiella pneumoniae liver abscesses,” The American Journal of the Medical Sciences, vol. 334, no. 2, pp. 97–105, 2007.
[28]  H. J. Mischinger, H. Hauser, H. Rabl et al., “Pyogenic liver abscess: studies of therapy and analysis of risk factors,” World Journal of Surgery, vol. 18, no. 6, pp. 852–858, 1994.
[29]  J. K. Kim, D. R. Chung, S. H. Wie, J. H. Yoo, and S. W. Park, “Risk factor analysis of invasive liver abscess caused by the K1 serotype Klebsiella pneumoniae,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 1, pp. 109–111, 2009.
[30]  N. K. Lee, S. Kim, J. W. Lee et al., “CT differentiation of pyogenic liver abscesses caused by Klebsiella pneumoniae versus non-Klebsiella pneumoniae,” The British Journal of Radiology, vol. 84, no. 1002, pp. 518–525, 2011.
[31]  S. C. Chen, C. C. Huang, S. J. Tsai et al., “Severity of disease as main predictor for mortality in patients with pyogenic liver abscess,” The American Journal of Surgery, vol. 198, no. 2, pp. 164–172, 2009.
[32]  J. Fierer, “Biofilm formation and Klebsiella pneumoniae liver abscess: true, true and unrelated?” Virulence, vol. 3, no. 3, pp. 241–242, 2012.
[33]  W. K. Huang, J. W. Chang, L. C. See et al., “Higher rate of colorectal cancer among patients with pyogenic liver abscess with Klebsiella pneumoniae than those without: an 11-year follow-up study,” Colorectal Disease, vol. 14, no. 12, pp. e794–e801, 2012.
[34]  K. Morii, A. Kashihara, S. Miura et al., “Successful hepatectomy for intraperitoneal rupture of pyogenic liver abscess caused by Klebsiella pneumoniae,” Clinical Journal of Gastroenterology, vol. 5, no. 2, pp. 136–140, 2012.
[35]  C. C. Yang, C. H. Yen, M. W. Ho, and J. H. Wang, “Comparison of pyogenic liver abscess caused by non-Klebsiella pneumoniae and Klebsiella pneumoniae,” Journal of Microbiology, Immunology and Infection, vol. 37, no. 3, pp. 176–184, 2004.
[36]  S. Basu, “Klebsiella pneumoniae: an emerging pathogen of pyogenic liver abscess,” Oman Medical Journal, vol. 24, no. 2, pp. 131–133, 2009.
[37]  J. J. Mezhir, Y. Fong, L. M. Jacks et al., “Current management of pyogenic liver abscess: surgery is now second-line treatment,” Journal of the American College of Surgeons, vol. 210, no. 6, pp. 975–983, 2010.
[38]  S. T. Law and M. K. K. Li, “Is there any difference in pyogenic liver abscess caused by Streptococcus milleri and Klebsiella spp?: Retrospective analysis over a 10-year period in a regional hospital,” Journal of Microbiology, Immunology and Infection, vol. 46, no. 1, pp. 11–18, 2013.
[39]  S. U. Shin, C. M. Park, Y. Lee, E. C. Kim, S. J. Kim, and J. M. Goo, “Clinical and radiological features of invasive Klebsiella pneumoniae liver abscess syndrome,” Acta Radiologica, vol. 54, no. 5, pp. 557–563, 2013.
[40]  J. Y. Hui, M. K. W. Yang, D. H. Y. Cho et al., “Pyogenic liver abscesses caused by Klebsiella pneumoniae: US appearance and aspiration findings,” Radiology, vol. 242, no. 3, pp. 769–776, 2007.
[41]  H. S. Alsaif, S. K. Venkatesh, D. S. G. Chan, and S. Archuleta, “CT appearance of pyogenic liver abscesses caused by Klebsiella pneumoniae,” Radiology, vol. 260, no. 1, pp. 129–138, 2011.
[42]  J. R. Anstey, T. N. Fazio, D. L. Gordon et al., “Community-acquired Klebsiella pneumoniae liver abscesses—an “emerging disease” in Australia,” Medical Journal of Australia, vol. 193, no. 9, pp. 543–545, 2010.
[43]  Y. J. Su, Y. C. Lai, Y. C. Lin, and Y. H. Yeh, “Treatment and prognosis of pyogenic liver abscess,” International Journal of Emergency Medicine, vol. 3, no. 4, pp. 381–384, 2010.
[44]  M. El-Shabrawi and F. Hassanin, “Pyogenic liver abscess,” in Textbook of Clinical Pediatrics, vol. 3, pp. 2109–2112, 2012.
[45]  T. Tatsuta, T. Wada, D. Chinda et al., “A case of gas-forming liver abscess with diabetes mellitus,” Internal Medicine, vol. 50, no. 20, pp. 2329–2332, 2011.
[46]  S. C. H. Yu, S. S. M. Ho, W. Y. Lau et al., “Treatment of pyogenic liver abscess: prospective randomized comparison of catheter drainage and needle aspiration,” Hepatology, vol. 39, no. 4, pp. 932–938, 2004.
[47]  A. A. Malik, S. U. Bari, K. A. Rouf, and K. A. Wani, “Pyogenic liver abscess: changing patterns in approach,” World Journal of Gastrointestinal Surgery, vol. 2, no. 12, pp. 395–401, 2010.
[48]  L. K. Siu, K. M. Yeh, J. C. Lin, C. P. Fung, and F. Y. Chang, “Klebsiella pneumoniae liver abscess: a new invasive syndrome,” The Lancet Infectious Diseases, vol. 12, no. 11, pp. 881–887, 2012.
[49]  Y. T. Lin, L. K. Siu, J. C. Lin et al., “Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries,” BMC Microbiology, vol. 12, article 13, 2012.
[50]  J. C. Lin, L. K. Siu, C. P. Fung et al., “Impaired phagocytosis of capsular serotypes K1 or K2 Klebsiella pneumoniae in type 2 diabetes mellitus patients with poor glycemic control,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 3084–3087, 2006.
[51]  Y. S. Yang, L. K. Siu, K. M. Yeh et al., “Recurrent Klebsiella pneumoniae liver abscess: clinical and microbiological characteristics,” Journal of Clinical Microbiology, vol. 47, no. 10, pp. 3336–3339, 2009.
[52]  W. L. Yu, W. C. Ko, K. C. Cheng, C. C. Lee, C. C. Lai, and Y. C. Chuang, “Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes,” Diagnostic Microbiology and Infectious Disease, vol. 62, no. 1, pp. 1–6, 2008.
[53]  C. R. Hsu, T. L. Lin, Y. C. Chen, H. C. Chou, and J. T. Wang, “The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited,” Microbiology, vol. 157, part 12, pp. 3446–3457, 2011.
[54]  C. T. Fang, Y. P. Chuang, C. T. Shun, S. C. Chang, and J. T. Wang, “A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications,” Journal of Experimental Medicine, vol. 199, no. 5, pp. 697–705, 2004.
[55]  X. Nassif and P. J. Sansonetti, “Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin,” Infection and Immunity, vol. 54, no. 3, pp. 603–608, 1986.
[56]  L. C. Ma, C. Fang, C. Z. Lee, C. T. Shun, and J. T. Wang, “Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection,” Journal of Infectious Diseases, vol. 192, no. 1, pp. 117–128, 2005.
[57]  M. C. Wu, Y. C. Chen, T. L. Lin, P. F. Hsieh, and J. T. Wang, “Cellobiose-specific phosphotransferase system of Klebsiella pneumoniae and its importance in biofilm formation and virulence,” Infection and Immunity, vol. 80, no. 7, pp. 2464–2472, 2012.
[58]  H. C. Chou, C. Z. Lee, L. C. Ma, C. T. Fang, S. C. Chang, and J. T. Wang, “Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection,” Infection and Immunity, vol. 72, no. 7, pp. 3783–3792, 2004.
[59]  M. Ukikusa, T. Inomoto, T. Kitai et al., “Pneumoperitoneum following the spontaneous rupture of a gas-containing pyogenic liver abscess: report of a case,” Surgery Today, vol. 31, no. 1, pp. 76–79, 2001.
[60]  J. A. Alvarez Pérez, J. J. González, R. F. Baldonedo et al., “Clinical course, treatment, and multivariate analysis of risk factors for pyogenic liver abscess,” The American Journal of Surgery, vol. 181, no. 2, pp. 177–186, 2001.
[61]  D. L. Paterson, W. Ko, A. von Gottberg et al., “Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum β-lactamases,” Clinical Infectious Diseases, vol. 39, no. 1, pp. 31–37, 2004.
[62]  S. S. Lee, Y. S. Chen, H. C. Tsai et al., “Predictors of septic metastatic infection and mortality among patients with Klebsiella pneumoniae liver abscess,” Clinical Infectious Diseases, vol. 47, no. 5, pp. 642–650, 2008.
[63]  H. P. Cheng, L. K. Siu, and F. Y. Chang, “Extended-spectrum cephalosporin compared to cefazolin for treatment of Klebsiella pneumoniae-caused liver abscess,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 7, pp. 2088–2092, 2003.
[64]  M. L. Durand, “Endophthalmitis,” Clinical Microbiology and Infection, vol. 19, no. 3, pp. 227–234, 2013.
[65]  A. H. Kashani and D. Eliott, “The emergence of Klebsiella pneumoniae endogenous endophthalmitis in the USA basic and clinical advances,” Journal of Ophthalmic Inflammation and Infection, vol. 3, no. 1, article 28, 2013.
[66]  J. Lee, C. E. Oh, E. H. Choi, and H. J. Lee, “The impact of the increased use of piperacillin/tazobactam on the selection of antibiotic resistance among invasive Escherichia coli and Klebsiella pneumoniae isolates,” International Journal of Infectious Diseases, vol. 17, no. 8, pp. e638–e643, 2013.
[67]  J. Lee, H. Pai, Y. K. Kim et al., “Control of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing antimicrobial agent usage policy,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 3, pp. 629–637, 2007.
[68]  L. T. Tian, K. Yao, X. Y. Zhang et al., “Liver abscesses in adult patients with and without diabetes mellitus: an analysis of the clinical characteristics, features of the causative pathogens, outcomes and predictors of fatality: a report based on a large population, retrospective study in China,” Clinical Microbiology and Infection, vol. 18, no. 9, pp. E314–E330, 2012.
[69]  G. Ferraioli, A. Garlaschelli, D. Zanaboni et al., “Percutaneous and surgical treatment of pyogenic liver abscesses: observation over a 21-year period in 148 patients,” Digestive and Liver Disease, vol. 40, no. 8, pp. 690–696, 2008.
[70]  G. Porras-Ramirez, M. H. Hernandez-Herrera, and J. D. Porras-Hernandez, “Amebic hepatic abscess in children,” Journal of Pediatric Surgery, vol. 30, no. 5, pp. 662–664, 1995.
[71]  W. W. Hope, D. V. Vrochides, W. L. Newcomb, W. W. Mayo-Smith, and D. A. Iannitti, “Optimal treatment of hepatic abscess,” American Surgeon, vol. 74, no. 2, pp. 178–182, 2008.
[72]  A. Onder, M. Kapan, A. Boyuk et al., “Surgical management of pyogenic liver abscess,” European Review for Medical and Pharmacological Sciences, vol. 15, no. 10, pp. 1182–1186, 2011.
[73]  F. C. Yeh, K. M. Yeh, L. K. Siu et al., “Increasing opsonizing and killing effect of serum from patients with recurrent K1 Klebsiella pneumoniae liver abscess,” Journal of Microbiology, Immunology and Infection, vol. 45, no. 2, pp. 141–146, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133