全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Associations of miR-499 and miR-34b/c Polymorphisms with Susceptibility to Hepatocellular Carcinoma: An Evidence-Based Evaluation

DOI: 10.1155/2013/719202

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Hepatocellular carcinoma (HCC) represents the sixth common cancer in the world. Single nucleotide polymorphisms (SNPs) in microRNA genes may be associated with susceptibility to HCC. Recently, several studies have reported possible associations of SNPs miR-499 T>C rs3746444 and miR-34b/c T>C rs4938723 with the risk of HCC. However the results are inconsistent and inconclusive. In this present study, we conducted a meta-analysis to comprehensively evaluate potential associations between the two SNPs and HCC susceptibility. Methods. Through a systematic literature search, 8-case-control studies involving 5464 subjects were identified and included in this meta-analysis. The association between the two common SNPs and HCC risk was estimated by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). Our results showed no significant association between rs3746444 and susceptibility to HCC, whereas variant genotypes of rs4938723 were associated with increased HCC risk in allele frequency model and heterozygous model (C versus T, , 95% CI: 1.01–1.23, ; TC versus TT, , 95% CI: 1.03–1.37, ). Conclusions. The current evidence did not support association between rs3746444 and HCC risk. SNP rs4938723 may be associated with susceptibility to HCC. Further well-designed studies are required to clarify the relationships between the two SNPs and HCC risk. 1. Introduction Hepatocellular carcinoma (HCC) represents the most common primary malignancy of the liver. According to epidemiological survey, the prevalence of HCC ranks the sixth among all cancers. Although the diagnosis and treatment of HCC have significantly been improved in recent years, the prognosis remains poor. HCC accounts for approximately 700,000 cancer-related deaths per year, which ranks the third in global cancer statistics [1, 2]. The mechanism of hepatic carcinogenesis remains elusive. Chronic infection of hepatitis B and hepatitis C viruses (HBV and HCV) and subsequent liver injury-regeneration cycle are considered a major etiology of HCC [3]. However, only a small fraction of chronic viral hepatitis patients finally develop HCC while a considerable portion of HCC cases arise from livers without chronic hepatitis. This fact indicates that the carcinogenesis of HCC is a complex process with multiple factors involved [2, 4]. Recent studies indicate that genetic factors may play important roles in the development of HCC [4]. MicroRNAs (miRNAs) are a group of endogenous small noncoding RNA molecules with length of around 22 nucleotides. It is now clear that miRNAs function as

References

[1]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[2]  H. B. El-Serag, “Hepatocellular carcinoma,” The New England Journal of Medicine, vol. 365, no. 12, pp. 1118–1127, 2011.
[3]  A. Arzumanyan, H. M. G. P. V. Reis, and M. A. Feitelson, “Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma,” Nature Reviews Cancer, vol. 13, pp. 123–135, 2013.
[4]  H. B. El-Serag and K. L. Rudolph, “Hepatocellular carcinoma: epidemiology and molecular carcinogenesis,” Gastroenterology, vol. 132, no. 7, pp. 2557–2576, 2007.
[5]  D. P. Bartel, “microRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[6]  T. A. Farazi, J. I. Hoell, P. Morozov, et al., “MicroRNAs in human cancer,” Advances in Experimental Medicine and Biology, vol. 774, pp. 1–20, 2013.
[7]  M. V. Iorio and C. M. Croce, “microRNA involvement in human cancer,” Carcinogenesis, vol. 33, pp. 1126–1133, 2012.
[8]  X. W. Wang, N. H. H. Heegaard, and H. Orum, “microRNAs in liver disease,” Gastroenterology, vol. 142, pp. 1431–1443, 2012.
[9]  C. M. Wong, A. K. L. Kai, F. H. C. Tsang, and I. O. Ng, “Regulation of hepatocarcinogenesis by microRNAs,” Frontiers in Bioscience (Elite Edition), vol. 5, pp. 49–60, 2013.
[10]  S. Giordano and A. Columbano, “microRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma?” Hepatology, vol. 57, pp. 840–847, 2013.
[11]  F. Lovat, N. Valeri, and C. M. Croce, “MicroRNAs in the pathogenesis of cancer,” Seminars in Oncology, vol. 38, no. 6, pp. 724–733, 2011.
[12]  J. Gong, Y. Tong, H.-M. Zhang et al., “Genome-wide identification of SNPs in MicroRNA genes and the SNP effects on MicroRNA target binding and biogenesis,” Human Mutation, vol. 33, no. 1, pp. 254–263, 2012.
[13]  S. Bandiera, E. Hatem, S. Lyonnet, and A. Henrion-Caude, “microRNAs in diseases: from candidate to modifier genes,” Clinical Genetics, vol. 77, no. 4, pp. 306–313, 2010.
[14]  M. H. Bender, L. C. Koenig, N. Joschko, et al., “P53 is an important regulator of micrornas in hepatocellular carcinoma,” Hepatology, vol. 52, p. 951A, 2010.
[15]  L. He, X. He, L. P. Lim et al., “A microRNA component of the p53 tumour suppressor network,” Nature, vol. 447, no. 7148, pp. 1130–1134, 2007.
[16]  J.-X. Wang, J.-Q. Jiao, Q. Li et al., “MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1,” Nature Medicine, vol. 17, no. 1, pp. 71–78, 2011.
[17]  H. Akkiz, S. Bayram, A. Bekar, et al., “Genetic variation in the microRNA-499 gene and hepatocellular carcinoma risk in a Turkish population: lack of any association in a case-control study,” Asian Pacific Journal of Cancer Prevention, vol. 12, pp. 3107–3112, 2011.
[18]  W. H. Kim, K. T. Min, Y. J. Jeon, et al., “Association study of microRNA polymorphisms with hepatocellular carcinoma in Korean population,” Gene, vol. 504, pp. 92–97, 2012.
[19]  Y. Xiang, S. Fan, J. Cao, S. Huang, and L.-P. Zhang, “Association of the microRNA-499 variants with susceptibility to hepatocellular carcinoma in a Chinese population,” Molecular Biology Reports, vol. 39, pp. 7019–7023, 2012.
[20]  J. Zhou, R. Lv, X. Song et al., “Association between two genetic variants in miRNA and primary liver cancer risk in the Chinese population,” DNA and Cell Biology, vol. 31, no. 4, pp. 524–530, 2012.
[21]  H.-Z. Zou and Y.-Q. Zhao, “Positive association between miR-499A>G and hepatocellular carcinoma risk in a Chinese population,” Asian Pacific Journal of Cancer Prevention, vol. 14, pp. 1769–1772, 2013.
[22]  Y. Xu, L. Liu, J. Liu et al., “A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma,” International Journal of Cancer, vol. 128, no. 2, pp. 412–417, 2011.
[23]  M. S. Son, M. J. Jang, Y. J. Jeon, et al., “Promoter polymorphisms of pri-miR-34b/c are associated with hepatocellular carcinoma,” Gene, vol. 524, pp. 156–160, 2013.
[24]  Y. F. Han, R. Pu, X. Han, et al., “Associations of pri-miR-34b/c and pre-miR-196a2 polymorphisms and their multiplicative interactions with hepatitis B virus mutations with hepatocellular carcinoma risk,” PLoS One, vol. 8, no. 3, Article ID e58564, 2013.
[25]  J. Lau, J. P. A. Ioannidis, and C. H. Schmid, “Quantitative synthesis in systematic reviews,” Annals of Internal Medicine, vol. 127, no. 9, pp. 820–826, 1997.
[26]  N. Mantel and W. Haenszel, “Statistical aspects of the analysis of data from retrospective studies of disease,” Journal of the National Cancer Institute, vol. 22, pp. 719–748, 1959.
[27]  R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986.
[28]  D. L. White, F. Kanwal, and H. B. El-Serag, “Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review,” Clinical Gastroenterology and Hepatology, vol. 10, pp. 1342.e2–1359.e2, 2012.
[29]  S. Huang and X. He, “The role of microRNAs in liver cancer progression,” British Journal of Cancer, vol. 104, no. 2, pp. 235–240, 2011.
[30]  D. W. Salzman and J. B. Weidhaas, “SNPing cancer in the bud: microRNA and microRNA-target site polymorphisms as diagnostic and prognostic biomarkers in cancer,” Pharmacology & Therapeutics, vol. 137, pp. 55–63, 2013.
[31]  Z. Wang, Y. Cao, C. Jiang, G. Yang, J. Wu, and Y. Ding, “Lack of association of two common polymorphisms rs2910164 and rs11614913 with susceptibility to hepatocellular carcinoma: a meta-analysis,” PLoS One, vol. 7, Article ID e40039, 2012.
[32]  K. Lafferty-Whyte, C. J. Cairney, N. B. Jamieson, K. A. Oien, and W. N. Keith, “Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms,” Biochimica et Biophysica Acta, vol. 1792, no. 4, pp. 341–352, 2009.
[33]  B. Yang, J. Chen, Y. Li et al., “Association of polymorphisms in pre-miRNA with inflammatory biomarkers in rheumatoid arthritis in the Chinese Han population,” Human Immunology, vol. 73, no. 1, pp. 101–106, 2012.
[34]  X. Q. Liu, Z. Zhang, L. Sun et al., “microRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4,” Carcinogenesis, vol. 32, no. 12, pp. 1798–1805, 2011.
[35]  Z. Hu, J. Liang, Z. Wang et al., “Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women,” Human Mutation, vol. 30, no. 1, pp. 79–84, 2009.
[36]  B. Zhou, K. Wang, Y. Wang et al., “Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma,” Molecular Carcinogenesis, vol. 50, no. 7, pp. 499–505, 2011.
[37]  Z. Liu, G. Li, S. Wei et al., “Genetic variants in selected pre-microRNA genes and the risk of squamous cell carcinoma of the head and neck,” Cancer, vol. 116, no. 20, pp. 4753–4760, 2010.
[38]  C. Daige, L. Priddy, K. Kelnar, et al., “The development of a miRNA-based therapeutic candidate for hepatocellular carcinoma,” Molecular Cancer Therapeutics, vol. 10, no. 11, 2011.
[39]  G. T. Bommer, I. Gerin, Y. Feng et al., “p53-mediated activation of miRNA34 candidate tumor-suppressor genes,” Current Biology, vol. 17, no. 15, pp. 1298–1307, 2007.
[40]  M. Toyota, H. Suzuki, Y. Sasaki et al., “Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer,” Cancer Research, vol. 68, no. 11, pp. 4123–4132, 2008.
[41]  K.-I. Kozaki, I. Imoto, S. Mogi, K. Omura, and J. Inazawa, “Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer,” Cancer Research, vol. 68, no. 7, pp. 2094–2105, 2008.
[42]  A. Lujambio, G. A. Calin, A. Villanueva et al., “A microRNA DNA methylation signature for human cancer metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13556–13561, 2008.
[43]  N. Tanaka, S. Toyooka, J. Soh et al., “Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer,” Lung Cancer, vol. 76, no. 1, pp. 32–38, 2012.
[44]  Z. Wang, Z. Chen, Y. Gao et al., “DNA hypermethylation of microRNA-34b/c has prognostic value for stage I non-small cell lung cancer,” Cancer Biology and Therapy, vol. 11, no. 5, pp. 490–496, 2011.
[45]  M. Vogt, J. Munding, M. Grüner et al., “Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas,” Virchows Archiv, vol. 458, no. 3, pp. 313–322, 2011.
[46]  L.-B. Gao, L.-J. Li, X. M. Pan, et al., “A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer,” Biological Chemistry, vol. 394, pp. 415–420, 2013.
[47]  L. Li, J. Wu, X. Sima, et al., “Interactions of miR-34b/c and TP-53 polymorphisms on the risk of nasopharyngeal carcinoma,” Tumor Biology, vol. 34, pp. 1919–1923, 2013.
[48]  J. T. Bensen, C. K. Tse, S. J. Nyante, et al., “Association of germline microRNA SNPs in pre-miRNA flanking region and breast cancer risk and survival: the Carolina Breast Cancer Study,” Cancer Causes Control, vol. 24, pp. 1099–1109, 2013.
[49]  P. Zou, L. Zhao, H. Xu, et al., “Hsa-mir-499 rs3746444 polymorphism and cancer risk: a meta-analysis,” Journal of Biomedical Research, vol. 26, pp. 253–259, 2012.
[50]  Y. G. Zhang, J. X. Shi, and C. H. Song, “Association of mir-499 and mir-149 polymorphisms with cancer risk in the Chinese population: evidence from published studies,” Asian Pacific Journal of Cancer Prevention, vol. 14, pp. 2337–2342, 2013.
[51]  Y. Xu, L. Li, X. Xiang, et al., “Three common functional polymorphisms in microRNA encoding genes in the susceptibility to hepatocellular carcinoma: a systematic review and meta-analysis,” vol. 527, no. 2, pp. 584–593, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413