全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Clinical Correlations of Helicobacter pylori Virulence Factors and Chronic Spontaneous Urticaria

DOI: 10.1155/2013/436727

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background and Study Aims. The association between Helicobacter pylori (H. pylori) and chronic spontaneous urticaria (CSU) remains controversial. This study explored the role of H. pylori in CSU among different virulent genotypes patients. Patients and Methods. Patients infected by H. pylori were sorted into two groups as group A (with CSU) and group B (without CSU). The tissue materials were taken via endoscopy for polymerase chain reaction study to determine virulence factors. After H. pylori eradication therapy, the eradication rate and response of urticaria were evaluated by using C13-UBT and a three-point scale (complete remission, partial remission, or no improvement). Results. The results were comparable between patients of groups A and B in terms of H. pylori infection rates and eradication rate. Longitudinal follow-up of 23.5 months showed complete remission of urticaria in 63.6% but no improvement in 36.4% of the patients after H. pylori eradication. H. pylori infected patients with different virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin gene A signal region and middle region have similar remission rates for CSU. Conclusions. Current study suggests that H. pylori may play a role in the development and disease course of CSU but may be irrelevant to different virulent genotypes. 1. Introduction Chronic spontaneous urticaria (CSU), defined as spontaneous occurrence of wheal and/or angioedema lasting for a period of longer than 6 weeks, is a common and often frustrating problem, affecting up to 1 percent of the general population [1, 2]. The causes of CSU are numerous; however, in at least 80–90% of the patients, the etiology is undetermined [2, 3]. Recent data show that about 30% of the affected patients may have functional autoantibodies [4]. On the other hand, Helicobacter pylori (H. pylori) infection is probably the most common chronic bacterial infection in humans, with the prevalence rate in general population estimated to be around 50% in developing countries [5]. It has been generally accepted that H. pylori infection plays an etiologic role in the development of chronic active gastritis, peptic ulcer disease, gastric malignancy, and low-grade gastric mucosa-associated lymphoid tissue lymphoma [5–8]. H. pylori is genetically highly diverse, and several genotypes have been identified to associate with severe gastric mucosal inflammation [9]. Cytotoxin-associated gene A (cagA) and vacuolating cytotoxin gene A (vacA), the two most important virulence factors of H. pylori [9], have been reported to enhance its

References

[1]  J. Ring, Allergy in Practice, Springer, Berlin, Germany, 2005.
[2]  T. Zuberbier, R. Asero, C. Bindslev-Jensen et al., “EAACI/GA2LEN/EDF/WAO guideline: definition, classification and diagnosis of urticaria,” Allergy, vol. 64, no. 10, pp. 1417–1426, 2009.
[3]  K. M. Nichols and F. E. Cook-Bolden, “Allergic skin disease: major highlights and recent advances,” Medical Clinics of North America, vol. 93, no. 6, pp. 1211–1224, 2009.
[4]  H. Philpott, F. Kette, P. Hissaria, D. Gillis, and W. Smith, “Chronic urticaria: the autoimmune paradigm,” Internal Medicine Journal, vol. 38, no. 11, pp. 852–857, 2008.
[5]  S. J. Konturek, P. C. Konturek, J. W. Konturek et al., “Helicobacter pylori and its involvement in gastritis and peptic ulcer formation,” Journal of Physiology and Pharmacology, vol. 57, supplement 3, pp. 29–50, 2006.
[6]  P. C. Konturek, S. J. Konturek, and T. Brzozowski, “Gastric cancer and Helicobacter pylori infection,” Journal of Physiology and Pharmacology, vol. 57, supplement 3, pp. 51–65, 2006.
[7]  S.-K. Chuah, F.-W. Tsay, P.-I. Hsu, and D.-C. Wu, “A new look at anti-Helicobacter pylori therapy,” World Journal of Gastroenterology, vol. 17, no. 35, pp. 3971–3975, 2011.
[8]  S.-K. Chuah, P.-I. Hsu, K.-C. Chang et al., “Randomized comparison of two non-bismuth-containing second-line rescue therapies for Helicobacter pylori,” Helicobacter, vol. 17, no. 3, pp. 216–223, 2012.
[9]  B. J. Marshall, “Helicobacter pylori,” American Journal of Gastroenterology, vol. 89, supplement 8, pp. S116–S128, 1994.
[10]  J. C. Atherton, P. Cao, R. M. Peek Jr., M. K. R. Tummuru, M. J. Blaser, and T. L. Cover, “Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration,” Journal of Biological Chemistry, vol. 270, no. 30, pp. 17771–17777, 1995.
[11]  C. Figueiredo, L.-J. van Doorn, C. Nogueira et al., “Helicobacter pylori genotypes are associated with clinical outcome in portuguese patients and show a high prevalence of infections with multiple strains,” Scandinavian Journal of Gastroenterology, vol. 36, no. 2, pp. 128–135, 2001.
[12]  M. Kidd, A. J. Lastovica, J. C. Atherton, and J. A. Louw, “Conservation of the cag pathogenicity island is associated with vacA alleles and gastroduodenal disease in South African Helicobacter pylori isolates,” Gut, vol. 49, no. 1, pp. 11–17, 2001.
[13]  Y.-H. Chang, L. Wang, M.-S. Lee, C.-W. Cheng, C.-Y. Wu, and M.-Y. Shiau, “Genotypic characterization of Helicobacter pylori cagA and vacA from biopsy specimens of patients with gastroduodenal diseases,” Mount Sinai Journal of Medicine, vol. 73, no. 3, pp. 622–626, 2006.
[14]  D. Basso, F. Navaglia, L. Brigato et al., “Analysis of Helicobacter pylori vacA and cagA genotypes and serum antibody profile in benign and malignant gastroduodenal diseases,” Gut, vol. 43, no. 2, pp. 182–186, 1998.
[15]  S. Fukuda, T. Shimoyama, N. Umegaki, T. Mikami, H. Nakano, and A. Munakata, “Effect of Helicobacter pylori eradication in the treatment of Japanese patients with chronic idiopathic urticaria,” Journal of Gastroenterology, vol. 39, no. 9, pp. 827–830, 2004.
[16]  D. G. Federman, R. S. Kirsner, J. P. Moriarty, and J. Concato, “The effect of antibiotic therapy for patients infected with Helicobacter pylori who have chronic urticaria,” Journal of the American Academy of Dermatology, vol. 49, no. 5, pp. 861–864, 2003.
[17]  A. Moreira, J. Rodrigues, L. Delgado, J. Fonseca, and M. Vaz, “Is Helicobacter pylori infection associated with chronic idiopathic urticaria?” Allergologia et Immunopathologia, vol. 31, no. 4, pp. 209–214, 2003.
[18]  P. Gaig, P. García-Ortega, E. Enrique, M. Papo, J. C. Quer, and C. Richard, “Efficacy of the eradication of Helicobacter pylori infection in patients with chronic urticaria. A placebo-controlled double blind study,” Allergologia et Immunopathologia, vol. 30, no. 5, pp. 255–258, 2002.
[19]  S. Datta, S. Chattopadhyay, G. B. Nair et al., “Virulence genes and neutral DNA markers of Helicobacter pylori isolates from different ethnic communities of West Bengal, India,” Journal of Clinical Microbiology, vol. 41, no. 8, pp. 3737–3743, 2003.
[20]  B. Tebbe, C. C. Geilen, J.-D. Schulzke, C. Bojarski, M. Radenhausen, and C. E. Orfanos, “Helicobacter pylori infection and chronic urticaria,” Journal of the American Academy of Dermatology, vol. 34, no. 4, pp. 685–686, 1996.
[21]  C. di Campli, A. Gasbarrini, E. Nucera et al., “Beneficial effects of Helicobacter pylori eradication on idiopathic chronic urticaria,” Digestive Diseases and Sciences, vol. 43, no. 6, pp. 1226–1229, 1998.
[22]  E. Daudén, I. Jiménez-Alonso, and A. García-Díez, “Helicobacter pylori and idiopathic chronic urticaria,” International Journal of Dermatology, vol. 39, no. 6, pp. 446–452, 2000.
[23]  B. Wedi, U. Raap, D. Wieczorek, and A. Kapp, “Urticaria and infections,” Allergy Asthma Clin Immunol, vol. 5, p. 10, 2009.
[24]  B. Schnyder, A. Helbling, and W. J. Pichler, “Chronic idiopathic urticaria: natural course and association with Helicobacter pylori infection,” International Archives of Allergy and Immunology, vol. 119, no. 1, pp. 60–63, 1999.
[25]  Y. Tüzün, S. Keskin, and E. Kote, “The role of Helicobacter pylori infection in skin diseases: facts and controversies,” Clinics in Dermatology, vol. 28, no. 5, pp. 478–482, 2010.
[26]  A. Shiotani, K. Okada, K. Yanaoka et al., “Beneficial effect of Helicobacter pylori eradication in dermatologic diseases,” Helicobacter, vol. 6, no. 1, pp. 60–65, 2001.
[27]  K. Dzierzanowska-Fangrat and D. Dzierzanowska, “Helicobacter pylori: microbiology and interactions with gastrointestinal microflora,” Journal of Physiology and Pharmacology, vol. 57, no. 3, pp. 5–14, 2006.
[28]  J. Q. Huang, G. F. Zheng, K. Sumanac, E. J. Irvine, and R. H. Hunt, “Meta-analysis of the relationship between cagA seropositivity and gastric cancer,” Gastroenterology, vol. 125, no. 6, pp. 1636–1644, 2003.
[29]  A. C. Hernando-Harder, N. Booken, S. Goerdt, M. V. Singer, and H. Harder, “Helicobacter pylori infection and dermatologic diseases,” European Journal of Dermatology, vol. 19, no. 5, pp. 431–444, 2009.
[30]  G. Argenziano, G. Donnarumma, M. R. Iovene, P. Arnese, M. A. Baldassarre, and A. Baroni, “Incidence of anti-Helicobacter pylori and anti-CagA antibodies in rosacea patients,” International Journal of Dermatology, vol. 42, no. 8, pp. 601–604, 2003.
[31]  N. Figura, A. Perrone, C. Gennari et al., “Food allergy and Helicobacter pylori infection,” Italian Journal of Gastroenterology and Hepatology, vol. 31, no. 3, pp. 186–191, 1999.
[32]  T. Matysiak-Budnik, K. Hashimoto, M. Heyman, A. de Mascarel, J.-F. Desjeux, and F. Mégraud, “Antral gastric permeability to antigens in mice is altered by infection with Helicobacter felis,” European Journal of Gastroenterology and Hepatology, vol. 11, no. 12, pp. 1371–1377, 1999.
[33]  T. Matysiak-Budnik, K. Terpend, S. Alain et al., “Helicobacter pylori alters exogenous antigen absorption and processing in a digestive tract epithelial cell line model,” Infection and Immunity, vol. 66, no. 12, pp. 5785–5791, 1998.
[34]  D. Ilver, A. Arnqvist, J. ?gren et al., “Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging,” Science, vol. 279, no. 5349, pp. 373–377, 1998.
[35]  S. Suerbaum, C. Josenhans, and A. Labigne, “Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange,” Journal of Bacteriology, vol. 175, no. 11, pp. 3278–3288, 1993.
[36]  Y. Yamaoka, T. Kodama, O. Gutierrez, J. G. Kim, K. Kashima, and D. Y. Graham, “Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries,” Journal of Clinical Microbiology, vol. 37, no. 7, pp. 2274–2279, 1999.
[37]  M. Gerhard, N. Lehn, N. Neumayer et al., “Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12778–12783, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133