全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Evaluation of Data Collected by Middle School and College-Level Students in Stream Channel Geomorphic Assessment

DOI: 10.1155/2013/898164

Full-Text   Cite this paper   Add to My Lib

Abstract:

This project tested the accuracy and repeatability of geomorphic stream channel assessments conducted by two different middle school classes from the Walt Morey Middle School in Troutdale, OR and college students from Portland State University in Portland, OR. Each group surveyed the same three cross-sections in Fairview Creek, a tributary to the Lower Columbia River, in order to assess stream channel geometry, discharge, composition of the bed material, and water quality. The three student groups were all able to accurately document the stream channel geometry, including stream width and mean depth, indicating that these data can be successfully collected by volunteers of various ages. However, stream velocity obtained using the float method was consistently overestimated leading to a biased calculation of discharge, and the low precision of the measurements did not allow for a correction of the bias. The median particle size of the bed material determined by a pebble count was also overestimated by each group, but the low precision also negated the possibility of correcting the estimate. The stored fine sediment in the bed was underestimated by each group and again with low precision. The temperature, pH, and conductivity measured with a calibrated multimeter were accurate and precise for all groups. 1. Introduction Watershed-scale models are increasingly being used to assist researchers and managers with determining the flux of sediment and nutrients between land and stream channels [1, 2]. Models are useful as the sheer magnitude of stream channel degradation, particularly in urban areas [3], by far exceeds the management resources required to assess and monitor changes in every impaired stream reach. Most sediment models use landscape variables, which can be derived from a Geographic Information System (GIS), to predict sediment delivery to a stream, and a few sediment models have incorporated in-channel sediment transport equations to further refine the ultimate sediment delivery volumes [4]. However, it is problematic to model the sediment contribution of the stream channel itself at the watershed scale because the inherent spatial and temporal heterogeneity of in-channel stored sediment is difficult to monitor remotely. Given that stream banks have been shown to contribute 80% [5] to 96% [6] of the total instream sediment load, fluvial geomorphologists and land resource managers have come to realize the pressing need for in situ gathered stream channel information in order to assess the impact of various land use practices on aquatic habitat and

References

[1]  J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. R. Williams, “Large area hydrologic modeling and assessment part I: model development,” Journal of the American Water Resources Association, vol. 34, no. 1, pp. 73–89, 1998.
[2]  V. P. Singh and D. K. Frevert, Eds., Mathematical Models of Small Watershed Hydrology and Applications, Water Resources, Highlands Ranch, Colo, USA, 2002.
[3]  C. J. Walsh, A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan II, “The urban stream syndrome: current knowledge and the search for a cure,” Journal of the North American Benthological Society, vol. 24, no. 3, pp. 706–723, 2005.
[4]  D. K. Borah and M. Bera, “Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases,” Transactions of the American Society of Agricultural Engineers, vol. 46, no. 6, pp. 1553–1566, 2003.
[5]  A. Simon, A. Curini, S. E. Darby, and E. J. Langendoen, “Bank and near-bank processes in an incised channel,” Geomorphology, vol. 35, no. 3-4, pp. 193–217, 2000.
[6]  C. D. Willett, R. N. Lerch, R. C. Schultz, S. A. Berges, R. D. Peacher, and T. M. Isenhart, “Streambank erosion in two watersheds of the central claypan region of Missouri, United States,” Journal of Soil and Water Conservation, vol. 67, no. 4, pp. 249–263, 2012.
[7]  S. J. Bennett, A. Simon, J. M. Castro et al., “The evoloving science of stream restoration,” in Stream Restoration in Dynamic Fluvial Systems, A. Simon, S. J. Bennett, and J. M. Castro, Eds., vol. 194 of Geophysical Monograph Series, pp. 1–8, American Geophysical Union, Washington, DC, USA, 2013.
[8]  Federal Interagency Stream Restoration Working Group, “Stream Corridor Restoration: Principles, Processes, and Practices,” GPO Item no. 0120-A, SuDocs no. A 57. 6/2:EN 3/PT. 653, 1998.
[9]  S. Heiskary, J. Lindbloom, and C. B. Wilson, “Detecting water quality trends with citizen volunteer data,” Lake and Reservoir Management, vol. 9, no. 1, pp. 4–9, 1994.
[10]  M. D. Mattson, M. F. Walk, P. A. Kerr, A. M. Slepskie, O. T. Zajicek, and P. J. Godfrey, “Quality assurance testing for a large scale volunteer monitoring program: the acid rain monitoring project,” Lake and Reservoir Management, vol. 9, no. 1, pp. 10–13, 1994.
[11]  J. V. Loperfido, P. Beyer, C. L. Just, and J. L. Schnoor, “Uses and biases of volunteer water quality data,” Environmental Science and Technology, vol. 44, no. 19, pp. 7193–7199, 2010.
[12]  S. R. Engel, J. R. Voshell, and Jr, “Volunteer biological monitoring: can it accurately assess the ecological condition of streams?” American Entomologist, vol. 48, no. 3, pp. 164–177, 2002.
[13]  J. F. Nerbonne and K. C. Nelson, “Volunteer macroinvertebrate monitoring in the United States: resource mobilization and comparative state structures,” Society and Natural Resources, vol. 17, no. 9, pp. 817–839, 2004.
[14]  L. S. Fore, K. Paulsen, and K. O'Laughlin, “Assessing the performance of volunteers in monitoring streams,” Freshwater Biology, vol. 46, no. 1, pp. 109–123, 2001.
[15]  E. Nicholson, J. Ryan, and D. Hodgkins, “Community data—where does the value lie? Assessing confidence limits of community collected water quality data,” Water Science and Technology, vol. 45, no. 11, pp. 193–200, 2002.
[16]  United States Environmental Protection Agency, “Volunteer stream monitoring: a methods manual,” Tech. Rep., Office of Water 4503F, Washington, DC, USA, EPA 841-B-97-003, 1997.
[17]  M. Kline, C. Alexander, S. Pomeroy, B. Cahoon, and L. Becker, Vermont Stream Geomorphic Assessment Phase 2 Handbook, Vermont Agency of Natural Resources, Montpelier, Vt, USA, 2004.
[18]  M. B. . Bain and N. J. Steveson, Eds., Aquatic Habitat Assessment: Common Methods, American Fisheries Society, Bethesda, Md, USA, 1999.
[19]  D. R. Montgomery and J. M. Buffington, “Channel-reach morphology in mountain drainage basins,” Bulletin of the Geological Society of America, vol. 109, no. 5, pp. 596–611, 1997.
[20]  J. Meyer and J. Wallace, “Lost linkages and lotic ecology: rediscovering small streams,” in Ecology: Achievement and Challenge., M. Press, N. Huntly, and S. Levin, Eds., pp. 295–317, Blackwell Scientific, Oxford, UK, 2001.
[21]  T. Gomi, R. D. Moore, and A. S. Dhakal, “Headwater stream temperature response to clear-cut harvesting with different riparian treatments, coastal British Columbia, Canada,” Water Resources Research, vol. 42, no. 8, 2006.
[22]  R. C. Ward, “On the response to precipitation of headwater streams in humid areas,” Journal of Hydrology, vol. 74, no. 1-2, pp. 171–189, 1984.
[23]  E. J. Nelson and D. B. Booth, “Sediment sources in an urbanizing, mixed land-use watershed,” Journal of Hydrology, vol. 264, no. 1–4, pp. 51–68, 2002.
[24]  J. Poracsky, J. Holland, and J. Wilt, “An inventory of nine stream corridors in multnomah county,” Oregon Cartographic Center, Geography Department, Portland State University, 1990.
[25]  C. C. Harrelson, C. L. Rawlins, and J. P. Potyondy, “Stream channel reference sites: an Illustrated guide to field technique,” General Technical Report RM-245, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colo, USA, 1994.
[26]  M. G. Wolman, “A method of sampling coarse river-bed material,” Transactions of the American Geophysical Union, vol. 35, no. 6, pp. 951–956, 1954.
[27]  “Quorer: a simple method for estimating deposited fine sediment,” National Center for Water Resources, 2005, http://www.niwascience.co.nz/ncwr/tools/quorer/index.html.
[28]  S. A. Schumm, The Fluvial System, John Wiley & Sons, New York, NY, USA, 1977.
[29]  “US Geological Survey,” The StreamStats program, 2013, http://streamstats.usgs.gov.
[30]  K. Bunte, S. Abt, and R. Steven, “Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring,” General Technical Report RMRS-GTR-74, United States Department of Agriculture, Forest Service, Fort Collins, Colo, USA, 2001.
[31]  M. A. Fonstad, J. P. Reichling, and J. W. Van de Grift, “The transparent velocity-head rod for inexpensive and accurate measurement of stream velocities,” Journal of Geoscience Education, vol. 53, no. 1, pp. 44–52, 2005.
[32]  C. Overdevest, C. H. Orr, and K. Stepenuck, “Volunteer stream monitoring and local participation in natural resource issues,” Human Ecology Review, vol. 11, no. 2, pp. 177–185, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133