全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tectonic Control on Drainage Network Evolution in the Upper Narmada Valley: Implication to Neotectonics

DOI: 10.1155/2013/325808

Full-Text   Cite this paper   Add to My Lib

Abstract:

Convergence of the Indian plate towards Eurasia is reflected in neotectonics along several zones throughout the Indian plate. Neotectonics of the upper Narmada river basin following one of the active Son-Narmada Fault (SNF central part) zones in central Peninsular India has been studied through tectonic geomorphometric parameters. The study area is 175?km wide and 400?km long valley and catchment area of upper Narmada river basin in Madhya Pradesh state. High resolution ASTER data indicates neotectonic features like sudden changes in drop of Narmada river floor at two locations around Jabalpur formed by conjugate normal faults. Cross profiles indicate uplift of the entire area by a few hundred meters south of the Son-Narmada south fault. Basin asymmetry parameter indicates northward shifting of the river course from middle of the basin due to uplift of the southern block. 1. Introduction Cratonic part of central India has witnessed reactivation during Precambrian. Later during Cretaceous, a 1600?km long and 200?km wide ENE-WSW trending rift zone developed in central Indian peninsula [1]. Three pericontinental rift basins were formed in the western margin of the Indian shield. The Son-Narmada rift developed in parallel to the Satpura trend during late Cretaceous, while the Cambay graben formed in colinearity with the Dharwar trend during early Cretaceous [2]. The Son-Narmada fault (SNF) zone has a Precambrian ancestry which separates Vindhyan basin to its north and the Gondwana belt southwards [3]. In both northern and southern regions of the Son-Narmada lineament, vertical block movements have been reported [3, 4]. Due to these movements, the Bijawar group of rocks within the SNF zone got uplifted during the time of sedimentation in Vindhyan Supergroup [5]. Presence of series of ENE-WSW trending subsurface structures within the sediments of Cambay basin suggests extension of Satpura trend across the basin. The NE-SW Aravalli-Delhi trend is well reflected in northern part of Cambay basin [2, 6]. Faults and lineaments are mainly aligned parallel/subparallel to the major tectonic grains. Along the marginal faults of Cambay basin, the Deccan Traps have been downfaulted (3000–5000?m); throw being more in eastern marginal fault has resulted in asymmetric graben structure [7–10]. The Son-Narmada fault/lineament and Tapi north Fault have ENE-WSW trend and control the course of main drainage system [11]. The Son-Narmada-Tapi (SONATA) zone extends WNW up to the shore of the Arabian Sea. Represented by a fault pair, SONATA defines Narmada rift valley and Satpura

References

[1]  S. Y. Waghmare and L. Carlo, “Geomagnetic Investivation in the seismoactive area of Narmada-Son lineament, Central India,” Journal of Indian Geophysical Union, vol. 12, no. 1, pp. 1–10, 2008.
[2]  Geological Survey of India, Projet Crumansonata: Geoscientific Studies of the Son-Narmada-Tapi Lineament Zone, 1995.
[3]  W. D. West, “The line of Narmada-Valley,” Current Science, vol. 31, pp. 143–144, 1962.
[4]  J. B. Auden, “Geological discussion of the Satpura hypothesis,” Proceedings of the National Institute of Sciences of India, vol. 15, pp. 315–340, 1949.
[5]  M. S. Krishnan and J. Swaminathan, “The great Vindhyan basin of northern India,” Journal of the Geological Society of India, vol. 1, pp. 10–30, 1959.
[6]  S. Biswas, I. Coutand, D. Grujic, C. Hager, D. St?ckli, and B. Grasemann, “Exhumation and uplift of the Shillong plateau and its influence on the eastern Himalayas: new constraints from apatite and zircon (uth-[sm])/he and apatite fission track analyses,” Tectonics, vol. 26, no. 6, 2007.
[7]  M. N. Qureshy, “Geophysical and Landsat lineament mapping—an approach illustrated from West-Central and South India,” Photogrammetria, vol. 37, no. 3–5, pp. 161–184, 1982.
[8]  A. K. Jain, N. Annup, and D. C. Singhal, “Crustal evolution of the Narmada-Son lineament and associated shear zones of the Indian lithosphere,” Indian Journal of Earth Science (CEISM Seminar), pp. 125–148, 1984.
[9]  D. M. Maurya, R. Rachna, and L. S. Chamyal, “Seismically induced deformational structures (seismites) from the mid-late Holocene terraces, lower mahi valley, Gujarat,” Journal of the Geological Society of India, vol. 51, no. 6, pp. 755–758, 1998.
[10]  D. M. Maurya, R. Rachna, and L. S. Chamyal, “History of tectonic evolution of Gujarat alluvial plains, western India during Quaternary: a review,” Journal of the Geological Society of India, vol. 55, no. 4, pp. 343–366, 2000.
[11]  L. S. Chamyal, D. M. Maurya, S. Bhandari, and R. Raj, “Late Quaternary geomorphic evolution of the lower Narmada valley, Western India: implications for neotectonic activity along the Narmada-Son Fault,” Geomorphology, vol. 46, no. 3-4, pp. 177–202, 2002.
[12]  S. K. Acharyya and A. Roy, “Tectonothermal history of the central Indian tectonic zone and reactivation of major faults/shear zones,” Journal of the Geological Society of India, vol. 55, no. 3, pp. 239–256, 2000.
[13]  R. Shanker, Geothermal Atlas of India, Geological Survey of India, Kolkata, India, 1991.
[14]  D. C. Mishra and P. Kumar, “Characteristic of faults associated with Narmada-Son lineament and rock types of Jabalpur section,” Current Science, vol. 75, pp. 308–310, 1998.
[15]  K. S. Valdiya, The Making of Indian Geodynamic Evolution, Macmillian Publication House, New Delhi, India, 2010.
[16]  A. S. N. Murty, D. M. Mall, P. R. K. Murty, and P. R. Reddy, “Two-dimensional crustal velocity structure along Hirapur-Mandla profile from seismic refraction and wide-angle reflection data,” Pure and Applied Geophysics, vol. 152, no. 2, pp. 247–266, 1998.
[17]  P. Kumar, H. C. Tewari, and G. Khandekar, “An anomalous high-velocity layer at shallow crustal depths in the Narmada zone, India,” Geophysical Journal International, vol. 142, no. 1, pp. 95–107, 2000.
[18]  D. C. Mishra, “Mid-continent gravity “high” of central India and the Gondwana tectonics,” Tectonophysics, vol. 212, no. 1-2, pp. 153–161, 1992.
[19]  R. K. Verma and P. Banerjee, “Nature of continental crust along the Narmada-Son lineament inferred from gravity and deep seismic sounding data,” Tectonophysics, vol. 202, no. 2–4, pp. 375–397, 1992.
[20]  A. R. Sridhar and H. C. Tewari, “Existence of a sedimentary graben in the western part of Narmada Zone: seismic evidence,” Journal of Geodynamics, vol. 31, no. 1, pp. 19–31, 2001.
[21]  D. C. Mishra, K. Arora, and V. M. Tiwari, “Gravity anomalies and associated tectonic features over the Indian Peninsular shield and adjoining ocean basins,” Tectonophysics, vol. 379, no. 1–4, pp. 61–76, 2004.
[22]  H. C. Tewari, A. S. N. Murty, P. Kumar, and A. R. Sridhar, “A tectonic model of the Narmada region,” Current Science, vol. 80, no. 7, pp. 873–878, 2001.
[23]  V. S. Krishnaswamy and K. R. Raghunandan, “The Satpura uplift and the palaeoclimate of the Holocene and auxiliary evidence from the Valmiki Ramayana,” Journal of the Geological Society of India, vol. 66, no. 2, pp. 161–170, 2005.
[24]  K. L. Kaila, P. R. K. Murty, D. M. Mall, M. M. Dixit, and D. Sarkar, “Deep seismic soundings along Hirapur-Mandla profile, central India,” Geophysical Journal of the Royal Astronomical Society, vol. 89, no. 1, pp. 399–404, 1987.
[25]  M. M. Dixit, H. C. Tewari, and C. V. Rao, “Two-dimensional velocity model of the crust beneath the South Cambay Basin, India from refraction and wide-angle reflection data,” Geophysical Journal International, vol. 181, no. 2, pp. 635–652, 2010.
[26]  A. Gupta, V. S. Kale, L. A. Owen, and A. K. Singhvi, “Late Quaternary bedrock incision in the Narmada river at Dardi Falls,” Current Science, vol. 93, no. 4, pp. 564–567, 2007.
[27]  R. Shanker, “Thermal and crustal structure of “SONATA”. A zone of mid continental rifting in Indian shield,” Journal of the Geological Society of India, vol. 37, no. 3, pp. 211–220, 1991.
[28]  V. D. Choubey, “Narmada-Son lineament, India,” Nature, vol. 232, pp. 38–40, 1971.
[29]  B. P. Radhakrishna and M. Ramakrishnan, “Archaean-Proterozoic boundary in India,” Journal of the Geological Society of India, vol. 32, no. 4, pp. 263–278, 1988.
[30]  S. C. Jain, K. K. K. Nair, and D. B. Yedekar, “Geology of the Son-Narmada-Tapi lineament zone in Central India. Geoscientific studies of the Son-Narmada-Tapi lineament zone,” in Project Crumansonata, vol. 10 of Special Publication, pp. 1–154, Geological Survey of India, 1995.
[31]  B. N. P. Agarwal, L. K. Das, K. Chakraborty, and C. H. Sivaji, “Analysis of the Bouguer anomaly over central India: a regional perspective,” Journal of the Geological Society of India, vol. 31, pp. 469–493, 1995.
[32]  S. Bhattacharji, N. Chatterjee, and J. M. Wampler, “Zones of Narmada-Tapi rift reactivation and Deccan volcanism: geochronological and geochemical evidence,” in Deccan Basalts, S. S. Deshmukh and K. K. K. Nair, Eds., pp. 329–340, Gondwana Geological Society, Nagpur, India, 1996.
[33]  K. L. Kaila, V. G. Krishna, and D. Mall, “Crustal structure along Mehmadabad-Billimora profile in the Cambay basin, India, from deep seismic soundings,” Tectonophysics, vol. 76, no. 1-2, pp. 99–130, 1981.
[34]  T. K. Roy, “Structural styles in southern Cambay basin India and role of Narmada geofracture in the formation of giant hydrocarbon accumulation,” Bulletin of the Oil and Natural Gas Commission, vol. 27, pp. 15–38, 1990.
[35]  S. K. Biswas, “Regional tectonic framework, structure and evolution of the western marginal basins of India,” Tectonophysics, vol. 135, no. 4, pp. 307–327, 1987.
[36]  W. Bull and L. Mcfadden, “Tectonic geomorphology north and south of the Garlock Fault California,” in Geomorphology in Arid Region, D. O. Doehring, Ed., pp. 115–138, State University of New York, Binghamton, NY, USA, 1977.
[37]  E. A. Keller and N. Pinter, Active Tectonics, Prentice Hall, Upper Seddle River, NJ, USA, 1996.
[38]  D. W. Burbank and R. S. Anderson, Tectonic Geomorphology, Blackwell Science, 2001.
[39]  D. Harbor and Y. Gunnell, “A long-strike escarpment heterogeneity of the Western Ghats: a synthesis of drainage and topography using digital morphometric tools,” Journal of the Geological Society of India, vol. 70, no. 3, pp. 411–426, 2007.
[40]  V. S. Kale and N. Shejwalkar, “Uplift along the western margin of the Deccan Basalt Province: is there any geomorphometric evidence?” Journal of Earth System Science, vol. 117, no. 6, pp. 959–971, 2008.
[41]  J. T. Hack, “Stream profile analysis and stream gradient index,” Journal of Research of the U.S. Geological Survey, vol. 1, pp. 421–429, 1973.
[42]  L. Seeber and V. Gornitz, “River profiles along the Himalayan arc as indicators of active tectonics,” Tectonophysics, vol. 92, no. 4, pp. 335–367, 1983.
[43]  P. W. Hare and T. W. Gardner, “Geomorphic indicators of vertical neotectonism along convergent plate margins, Nicoa Peninsula, Costa Rica,” in Tectonic Geomorphology: Proceedings of the 15th Annual Binghamton Geomorphology Symposium, International Series, vol. 15, pp. 75–104, 1985.
[44]  V. Jain and R. Sinha, “Response of active tectonics on the Alluvial Baghmati river, Himalayan foreland basin, eastern India,” Geomorphology, vol. 70, no. 3-4, pp. 339–356, 2005.
[45]  H. K. Gupta, I. Mohan, and H. Narain, “The Broach earthquake of March 23, 1970,” Bulletin of the Seismological Society of America, vol. 62, pp. 47–61, 1972.
[46]  H. K. Gupta, R. K. Chadha, M. N. Rao et al., “The Jabalpur earthquake of May 22, 1997,” Journal of the Geological Society of India, vol. 50, no. 1, pp. 85–91, 1997.
[47]  U. Chandra, “Earthquakes of peninsular India: a seismotectonics study,” Bulletin of the Seismological Society of America, vol. 65, pp. 1387–1413, 1977.
[48]  K. Rajendran and C. P. Rajendran, “Characteristics of the 1997 Jabalpur earthquake and their bearing on its mechanism,” Current Science, vol. 74, no. 2, pp. 168–174, 1998.
[49]  J. R. Kayal, “Seismotectonic study of the two recent SCR earthquakes in central India,” Journal of the Geological Society of India, vol. 55, no. 2, pp. 123–138, 2000.
[50]  S. N. Bhattacharya, A. K. Ghose, G. Suresh, P. R. Baidya, and R. C. Saxena, “Source parameters of Jabalpur earthquake of May 22, 1997,” Current Science, vol. 73, no. 10, pp. 855–863, 1997.
[51]  E. V. Apel, R. Burgmann, and P. Banerjee, “Indian plate motion, deformation, and plate boundary interactions,” Geophysical Journal International. In press.
[52]  P. Banerjee, R. Bürgmann, B. Nagarajan, and E. Apel, “Intraplate deformation of the Indian subcontinent,” Geophysical Research Letters, vol. 35, no. 18, 2008.
[53]  B. R. Rao, “Historical seismicity and deformation rates in the Indian peninsular shield,” Journal of Seismology, vol. 4, no. 3, pp. 247–258, 2000.
[54]  B. L. N. Kennett and S. Widiyantoro, “A low seismic wavespeed anomaly beneath northwestern India: a seismic signature of the Deccan plume?” Earth and Planetary Science Letters, vol. 165, no. 1, pp. 145–155, 1999.
[55]  D. V. Chandrasekhar, R. Bürgmann, C. D. Reddy, P. S. Sunil, and D. A. Schmidt, “Weak mantle in NW India probed by geodetic measurements following the 2001 Bhuj earthquake,” Earth and Planetary Science Letters, vol. 280, no. 1–4, pp. 229–235, 2009.
[56]  S. P. Anand and M. Rajaram, “Crustal structure of Narmada-Son Lineament: an aeromagnetic perspective,” Earth, Planets and Space, vol. 56, no. 5, pp. 9–12, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133