全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Morphometric Analysis to Infer Hydrological Behaviour of Lidder Watershed, Western Himalaya, India

DOI: 10.1155/2013/178021

Full-Text   Cite this paper   Add to My Lib

Abstract:

West Lidder River, in the Northwest Greater-Himalayan mountain range, is the major source of irrigation and drinking water supplies for the Kashmir Valley with a population of seven million people. The major source of water for the whole Lidder River is snow and icemelt emanating from its two subcatchments East Lidder and West Lidder. Snowmelt significantly contributes to the evolution of drainage patterns in this area. Quantitative morphometry plays a vital role in routing the snowmelt and other hydrological processes. Morphometric analysis of the West Lidder River catchment was carried out using geospatial technique. The outcome revealed that the entire study area has uniform lithology and is structurally permeable. The high drainage density of all subwatersheds indicate more surface runoff. The morphometric analysis also indicates that the area is more prone to weathering due to very-coarse to coarse drainage texture. All the subwatersheds showed dendritic to subdendritic drainage pattern. An immense control of structure on the drainage in some subwatersheds is indicated by their high bifurcation ratios. Circulatory and elongation ratios show that the subwatersheds have elongated to circular shapes. From the integrated analysis of the morphometric parameters, important hydrologic behaviour of 17 subwatersheds could be inferred. 1. Introduction The measurement and mathematical analysis of the configuration of the earth’s surface, shape, and dimension of its landforms is called morphometry [1–3]. To understand the evolution and behaviour of drainage patterns, several quantitative methods have been developed [4, 5]. In hydrology, basin drainage characteristics are fundamental in understanding various hydrological processes. Since watershed is the basic unit in hydrology; therefore, morphometric analysis at watershed scale is advantageous and preferable rather carry it out on individual channel or inconsistent segment areas. Watershed is an area of surface whose major runoff is conveyed to the single outlet and is the appropriate unit to study several processes of the land surface. For example, watershed is considered a fundamental erosional landscape element, wherein conspicuous interaction of land and water resources takes place. Being fundamental units of fluvial terrain, considerable research focal point has been done on watershed geometric characterization such as stream network topology and quantitative narration of shape, pattern, and drainage texture [5]. Hydrologic and geomorphic processes occur within the watershed, and morphometric

References

[1]  C. S. Agarwal, “Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U.P.,” Journal of the Indian Society of Remote Sensing, vol. 26, no. 4, pp. 169–175, 1998.
[2]  G. E. Obi Reddy, A. K. Maji, and K. S. Gajbhiye, “GIS for morphometric analysis of drainage basins,” GIS India, vol. 11, no. 4, pp. 9–14, 2002.
[3]  V. Pakhmode, H. Kulkarni, and S. B. Deolankar, “Hydrological-drainage analysis in watershed-programme planning: a case from the Deccan basalt, India,” Hydrogeology Journal, vol. 11, no. 5, pp. 595–604, 2003.
[4]  L. B. Leopold and T. Maddock, “The hydraulic geometry of stream channels and some physiographic implications,” USGS Professional Paper, vol. 252, pp. 1–57, 1953.
[5]  A. D. Abrahams, “Channel networks: a geomorphological perspective,” Water Resources Research, vol. 20, no. 2, pp. 161–168, 1984.
[6]  S. Singh, “Quantitative geomorphology of the drainage basin,” in Readings on Remote Sensing Applications, T. S. Chouhan and K. N. Joshi, Eds., Scientific Publishers, Jodhpur, India, 1992.
[7]  R. A. Dar, R. Chandra, and S. A. Romshoo, “Morphotectonic and lithostratigraphic analysis of intermontane Karewa basin of Kashmir Himalayas, India,” Journal of Mountain Science, vol. 10, no. 1, pp. 731–741, 2013.
[8]  S. A. Romshoo, S. A. Bhat, and I. Rashid, “Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus basin,” Journal of Earth System Science, vol. 121, no. 3, pp. 659–686, 2012.
[9]  A. N. Strahler, “Quantitative geomorphology of drainage basins and channel networks,” in Handbook of Applied Hydrology, V. T. Chow, Ed., section 4–11, McGraw-Hill, New York, NY, USA, 1964.
[10]  A. Strahler, “Quantitative analysis of watershed geomorphology,” Transactions American Geophysical Union, vol. 38, pp. 913–920, 1957.
[11]  J. Krishnamurthy, G. Srinivas, V. Jayaraman, and M. G. Chandrasekhar, “Influence of rock types and structures in the development of drainage networks in typical hardrock terrain,” ITC Journal, no. 3-4, pp. 252–259, 1996.
[12]  A. K. Das and S. Mukherjee, “Drainage morphometry using satellite data and GIS in Raigad district, Maharashtra,” Journal of the Geological Society of India, vol. 65, no. 5, pp. 577–586, 2005.
[13]  S. S. Vittala, S. Govindaih, and H. H. Gowda, “Morphometric analysis of sub-watershed in the Pavada area of Tumkur district, South India using remote sensing and GIS techniques,” Journal of Indian Remote Sensing, vol. 32, pp. 351–362, 2004.
[14]  S. K. Nag, “Morphometric analysis using remote sensing techniques in the Chaka subbasin Purulia district, West Bengal,” Journal of Indian Society of Remote Sensing, vol. 26, no. 1-2, pp. 69–76, 1998.
[15]  A. M. Y. Esper, “Morphometric analysis of Colanguil river basin and flash flood hazard, San Juan Argentina,” Environmental Geology, vol. 55, pp. 107–111, 2008.
[16]  T. N. Bhagwat, A. Shetty, and V. S. Hegde, “Spatial variation in drainage characteristics and geomorphic instantaneous unit hydrograph (GIUH); implications for watershed management-A case study of the Varada River basin, Northern Karnataka,” Catena, vol. 87, no. 1, pp. 52–59, 2011.
[17]  N. R. Bhaskar, B. P. Parida, and A. K. Nayak, “Flood estimation for ungauged catchments using the GIUH,” Journal of Water Resources Planning and Management, vol. 123, no. 4, pp. 228–237, 1997.
[18]  S. K. Jain, R. D. Singh, and S. M. Seth, “Design flood estimation using GIS supported GIUH approach,” Water Resources Management, vol. 14, no. 5, pp. 369–376, 2000.
[19]  M. Suresh, S. Sudhakara, K. N. Tiwari, and V. M. Chowdary, “Prioritization of watersheds using morphometric parameters and assessment of surface water potential using remote sensing,” Journal of the Indian Society of Remote Sensing, vol. 32, no. 3, 2004.
[20]  S. A. Bhat and S. A. Romshoo, “Digital elevation model based watershed characteristics of upper watersheds of Jhelum basin,” Journal of Applied Hydrology, vol. 21, no. 2, pp. 23–34, 2009.
[21]  J. F. O’Callaghan and D. M. Mark, “The extraction of drainage networks from digital elevation data,” Computer Vision, Graphics, and Image Processing, vol. 28, pp. 323–344, 1984.
[22]  R. E. Horton, “Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology,” Geological Society of America Bulletin, vol. 56, pp. 275–370, 1945.
[23]  S. A. Schumms, “Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey,” Bulletin of the Geological Society of America, vol. 67, pp. 597–646, 1956.
[24]  R. E. Horton, “Drainage basin characteristics,” Transactions American Geophysical Union, vol. 13, pp. 350–361, 1932.
[25]  V. C. Miller, “A Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee,” Tech. Rep. 3 NR 389-402, Columbia University, Department of Geology, ONR, New York, NY, USA, 1953.
[26]  K. Pareta and U. Pareta, “Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS,” International Journal of Geomatics and Geosciences, vol. 2, no. 1, 2011.
[27]  M. Sameena, J. Krishnamurthy, V. Jayaraman, and G. Ranganna, “Evaluation of drainage networks developed in hard rock terrain,” Geocarto International, vol. 24, no. 5, pp. 397–420, 2009.
[28]  A. Faniran, “The index of drainage intensity—a provisional new drainage factor,” Australian Journal of Science, vol. 31, pp. 328–330, 1968.
[29]  I. Rashid and S. A. Romshoo, “Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas,” Environmental Monitoring and Assessment, 2012.
[30]  M. Raza, A. Ahmed, and A. Mohammad, The Valley of Kashmir—A Geographical Interpretation, Vol. I, the Land, Vikas Publishing, New Delhi, India, 1978.
[31]  V. M. Meher, “The climate of Srinagar and its variability,” Geographical Review of India, vol. 33, no. 1, pp. 1–14, 1971.
[32]  B. M. Engelhardt, P. J. Weisberg, and J. C. Chambers, “Influences of watershed geomorphology on extent and composition of riparian vegetation,” Journal of Vegetation Science, vol. 23, no. 1, pp. 127–139, 2011.
[33]  J. E. Costa, “Hydraulics and basin morphometry of the largest flash floods in the conterminous United States,” Journal of Hydrology, vol. 93, no. 3-4, pp. 313–338, 1987.
[34]  S. Singh and M. C. Singh, “Morphometric analysis of Kanhar river basin,” The National Geographical Journal of India, vol. 43, no. 1, pp. 31–43, 1997.
[35]  W. Luo and J. M. Harlin, “A theoretical travel time based on watershed hypsometry,” Journal of the American Water Resources Association, vol. 39, no. 4, pp. 785–792, 2003.
[36]  J. M. Harlin, “The effect of precipitation variability on drainage basin morphometry,” American Journal of Science, vol. 280, no. 8, pp. 812–825, 1980.
[37]  J. M. Harlin, “Watershed morphometry and time to hydrograph peak,” Journal of Hydrology, vol. 67, no. 1-4, pp. 141–154, 1984.
[38]  S. A. Romshoo, “Geostatistical analysis of soil moisture measurements and remotely sensed data at different spatial scales,” Environmental Geology, vol. 45, no. 3, pp. 339–349, 2004.
[39]  S. A. Romshoo, M. Koike, S. Hironaka, O. Oki, and K. Musiake, “Influence of surface and vegetation characteristics on C-band radar measurements for soil moisture content,” Journal of Indian Society of Remote Sensing, vol. 30, no. 4, pp. 229–244, 2002.
[40]  D. R. Montgomery and W. E. Dietrich, “Source areas, drainage density, and channel initiation,” Water Resources Research, vol. 25, no. 8, pp. 1907–1918, 1989.
[41]  D. R. Montgomery and W. E. Dietrich, “Channel initiation and the problem of landscape scale,” Science, vol. 255, no. 5046, pp. 826–830, 1992.
[42]  E. M. Ghoneim, N. W. Arnell, and G. M. Foody, “Characterizing the flash flood hazards potential along the Red Sea coast of Egypt,” IAHS-AISH Publication, no. 271, pp. 211–216, 2002.
[43]  M. Diakakis, “A method for flood hazard mapping based on basin morphometry: application in two catchments in Greece,” Natural Hazards, vol. 56, no. 3, pp. 803–814, 2011.
[44]  P. C. Patton and V. R. Baker, “Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls,” Water Resources Research, vol. 12, no. 5, pp. 941–952, 1976.
[45]  A. D. Howard, “Role of hypsometry and planform in basin hydrologic response,” Hydrological Processes, vol. 4, no. 4, pp. 373–385, 1990.
[46]  K. Rakesh, A. K. Lohani, K. Sanjay, C. Chatterjee, and R. K. Nema, “GIS based morphometric analysis of Ajay river basin upto Srarath gauging site of South Bihar,” Journal of Applied Hydrology, vol. 14, no. 4, pp. 45–54, 2000.
[47]  B. Dodov and E. Foufoula-Georgiou, “Fluvial processes and streamflow variability: interplay in the scale-frequency continuum and implications for scaling,” Water Resources Research, vol. 41, no. 5, pp. 1–18, 2005.
[48]  L. C. Gottschalk, “Reservoir sedimentation,” in Handbook of Applied Hydrology, V. T. Chow, Ed., section 7-1, McGraw-Hill, New York, NY, USA, 1964.
[49]  B. A. Dodov and E. Foufoula-Georgiou, “Floodplain morphometry extraction from a high-resolution digital elevation model: a simple algorithm for regional analysis studies,” IEEE Geoscience and Remote Sensing Letters, vol. 3, no. 3, pp. 410–413, 2006.
[50]  P. C. Patton, “Drainage basin morphometry and floods,” in Flood Geomorphology, pp. 51–64, John Wiley & Sons, New York, NY, USA, 1988.
[51]  V. Gardiner and C. C. Park, “Drainage basin morphometry,” Progress in Physical Geography, vol. 2, no. 1, pp. 1–35, 1978.
[52]  W. B. Langbein, “Topographic characteristics of drainage basins,” U.S. Geological Survey. Water-Supply Paper, vol. 986, pp. 157–159, 1947.
[53]  W. Luo, “Quantifying groundwater-sapping landforms with a hypsometric technique,” Journal of Geophysical Research E: Planets, vol. 105, no. 1, pp. 1685–1694, 2000.
[54]  J. M. Harlin and C. Wijeyawickrema, “Irrigation and groundwater depletion in Caddo county, Oklahoma,” Journal of the American Water Resources Association, vol. 21, no. 1, pp. 15–22, 1985.
[55]  K. G. Smith, “Standards for grading textures of erosional topography,” American Journal of Science, vol. 248, pp. 655–668, 1950.
[56]  M. Y. Esper Angillieri, “Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina,” Environmental Geology, vol. 55, no. 1, pp. 107–111, 2008.
[57]  A. M. Youssef, B. Pradhan, and A. M. Hassan, “Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery,” Environmental Earth Sciences, vol. 62, no. 3, pp. 611–623, 2011.
[58]  A. D. Howard, “Role of hypsometry and planform in basin hydrologic response,” Hydrological Processes, vol. 4, no. 4, pp. 373–385, 1990.
[59]  R. C. Kochel, “Geomorphic impact of large floods: review and new perspectives on magnitude and frequency,” in Flood Geomorphology, pp. 169–187, John Wiley & Sons, New York, NY, USA, 1988.
[60]  G. E. Tucker and R. L. Bras, “Hillslope processes, drainage density, and landscape morphology,” Water Resources Research, vol. 34, no. 10, pp. 2751–2764, 1998.
[61]  M. Borga, et al., “Real time guidance for flash flood risk management,” FLOOD Site Research Project Report T16, 2008.
[62]  K. W. Potter and E. B. Faulkner, “Catchment response time as a predictor of flood quantiles,” Journal of the American Water Resources Association, vol. 23, no. 5, pp. 857–861, 1987.
[63]  R. C. Ward and M. Robinson, Principles of Hydrology, McGraw-Hill, Maidenhead, UK, 4th edition, 2000.
[64]  S. Shulits, “Quantitative formulation of stream and watershed morphology,” Bulletin of the International Association of Scientific Hydrology, vol. 3, pp. 201–207, 1968.
[65]  A. Demoulin, “Basin and river profile morphometry: a new index with a high potential for relative dating of tectonic uplift,” Geomorphology, vol. 126, no. 1-2, pp. 97–107, 2011.
[66]  T. B. Altin and B. N. Altin, “Drainage morphometry and its influence on landforms in volcanic terrain, Central Anatolia, Turkey,” Procedia—Social and Behavioral Sciences, vol. 19, pp. 732–740, 2011.
[67]  M. Rashid, M. A. Lone, and S. A. Romshoo, “Geospatial tools for assessing land degradation in Budgam district, Kashmir Himalaya, India,” Journal of Earth System Science, vol. 120, no. 3, pp. 423–433, 2011.
[68]  S. Zaz and S. A. Romshoo, “Assessing the geoindicators of land degradation in the Kashmir Himalayan Region, India,” Natural Hazards, vol. 64, no. 2, pp. 1219–1245, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133