全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Parvovirus B19 Associated Hepatitis

DOI: 10.1155/2013/472027

Full-Text   Cite this paper   Add to My Lib

Abstract:

Parvovirus B19 infection can present with myriads of clinical diseases and syndromes; liver manifestations and hepatitis are examples of them. Parvovirus B19 hepatitis associated aplastic anemia and its coinfection with other hepatotropic viruses are relatively underrecognized, and there is sufficient evidence in the literature suggesting that B19 infections can cause a spectrum of liver diseases from elevation of transaminases to acute hepatitis to fulminant liver failure and even chronic hepatitis. It can also cause fatal macrophage activation syndrome and fibrosing cholestatic hepatitis. Parvovirus B19 is an erythrovirus that can only be replicate in pronormoblasts and hepatocytes, and other cells which have globosides and glycosphingolipids in their membrane can also be affected by direct virus injury due to nonstructural protein 1 persistence and indirectly by immune mediated injury. The virus infection is suspected in bone marrow aspiration in cases with sudden drop of hemoglobin and onset of transient aplastic anemia in immunosuppressed or immunocompetent patients and is confirmed either by IgM and IgG positive serology, PCR analysis, and in situ hybridization in biopsy specimens or by application of both. There is no specific treatment for parvovirus B19 related liver diseases, but triple therapy regimen may be effective consisting of immunoglobulin, dehydrohydrocortisone, and cyclosporine. 1. Background Parvoviridae family includes many pathogenic animal viruses including adeno-associated viruses which appear to infect humans without causing clinical manifestations. Most parvoviruses depend upon the help from host cells or other viruses to replicate, whereas only few (autonomous) parvoviruses propagate in actively dividing cells. Parvovirus B19 (B19) is the type member of the erythrovirus genus which propagates primarily in erythroid progenitor cells [1]. B19 can infect erythroid precursors, hepatocytes, and other cells that possess globosides and glycosphingolipids in their cell membrane, but it can only replicate in the erythroid precursors and few other cells including fetal liver, isolated stem and bone marrow cells, and megakaryocytic leukemia cell lines maintained with erythropoietin [2, 3]. Infection of parvovirus B19 is globally prevalent with infection being very common among children. The virus spreads primarily through respiratory droplets, and secondary infection is by household contacts. It can also be transmitted as nosocomial infections and by blood products. B19 is resistant to heat inactivation and organic detergent, because of

References

[1]  N. S. Young and K. E. Brown, “Mechanisms of disease: parvovirus B19,” The New England Journal of Medicine, vol. 350, no. 6, pp. 586–597, 2004.
[2]  K. E. Brown and N. S. Young, “The simian parvoviruses,” Reviews in Medical Virology, vol. 7, pp. 211–218, 1997.
[3]  T. L. Moore, “Parvovirus-associated arthritis,” Current Opinion in Rheumatology, vol. 12, no. 4, pp. 289–294, 2000.
[4]  T. Chorba, P. Coccia, and R. C. Holman, “The role of parvovirus B19 in aplastic crisis and erythema infectiosum (fifth disease),” Journal of Infectious Diseases, vol. 154, no. 3, pp. 383–393, 1986.
[5]  Z. He, H. Zhuang, X. Wang et al., “Retrospective analysis of non-A-E hepatitis: possible role of hepatitis B and C virus infection,” Journal of Medical Virology, vol. 69, no. 1, pp. 59–65, 2003.
[6]  S. Arista, S. De Grazia, V. Di Marco, R. Di Stefano, and A. Craxì, “Parvovirus B19 and “cryptogenic” chronic hepatitis,” Journal of Hepatology, vol. 38, no. 3, pp. 375–376, 2003.
[7]  M. Beghetti, A. Gervaix, C. A. Haenggeli, M. Berner, and P. C. Rimensberger, “Myocarditis associated with parvovirus B19 infection in two siblings with merosin-deficient congenital muscular dystrophy,” European Journal of Pediatrics, vol. 159, no. 1-2, pp. 135–136, 2000.
[8]  T. H. Finkel, T. J. T?r?k, P. J. Ferguson et al., “Chronic parvovirus B19 infection and systemic necrotising vasculitis: opportunistic infection or aetiological agent?” The Lancet, vol. 343, no. 8908, pp. 1255–1258, 1994.
[9]  G. Nigro, M. Zerbini, A. Krzysztofiak et al., “Active or recent parvovirus B19 infection in children with Kawasaki disease,” The Lancet, vol. 343, no. 8908, pp. 1260–1261, 1994.
[10]  P. J. Ferguson, F. T. Saulsbury, S. F. Dowell, T. J. T?r?k, D. D. Erdman, and L. J. Anderson, “Prevalence of human parvovirus B19 infection in children with Henoch-Sch?nlein purpura,” Arthritis and Rheumatism, vol. 39, no. 5, pp. 880–881, 1996.
[11]  S. E. Gabriel, M. Espy, D. D. Erdman, J. Bjornsson, T. F. Smith, and G. G. Hunder, “The role of parvovirus B19 in the pathogenesis of giant cell arteritis: a preliminary evaluation,” Arthritis and Rheumatism, vol. 42, pp. 1255–1258, 1999.
[12]  S. B. Smith, L. F. Libow, D. M. Elston, R. A. Bernert, and K. E. Warschaw, “Gloves and socks syndrome: early and late histopathologic features,” Journal of the American Academy of Dermatology, vol. 47, no. 5, pp. 749–754, 2002.
[13]  S. Kim Jacobson, J. S. Daly, G. M. Thorne, and K. McIntosh, “Chronic parvovirus B19 infection resulting in chronic fatigue syndrome: case history and review,” Clinical Infectious Diseases, vol. 24, no. 6, pp. 1048–1051, 1997.
[14]  J. R. Kerr, F. Barah, M. L. Chiswick et al., “Evidence for the role of demyelination, HLA-DR alleles, and cytokines in the pathogenesis of parvovirus B19 meningoencephalitis and its sequelae,” Journal of Neurology Neurosurgery and Psychiatry, vol. 73, no. 6, pp. 739–746, 2002.
[15]  I. Mihály, A. Trethon, Z. Arányi et al., “Observations on human parvovirus B19 infection diagnosed in 2011,” Orvosi Hetilap, vol. 153, no. 49, pp. 1948–1957, 2012.
[16]  J. Martínez González, C. Senosiain Lalastra, F. Mesonero Gismero, and V. Moreira Vicente, “An exceptional cause of acute hepatitis in an adult: parvovirus B19,” Journal of Gastroenterology and Hepatology, vol. 35, no. 10, pp. 697–699, 2012.
[17]  L. Sun and J.-C. Zhang, “Acute fulminant hepatitis with bone marrow failure in an adult due to parvovirus B19 infection,” Hepatology, vol. 55, no. 1, pp. 329–330, 2012.
[18]  L. Larsen, “Parvovirus B19-akut hepatitis hos immunkompetent patient,” Ugeskrift for Laeger, vol. 173, no. 43, pp. 2719–2720, 2011.
[19]  A. Hatakka, J. Klein, R. He, J. Piper, E. Tam, and A. Walkty, “Acute hepatitis as a manifestation of parvovirus B19 infection,” Journal of Clinical Microbiology, vol. 49, no. 9, pp. 3422–3424, 2011.
[20]  S.-H. Yang, L.-W. Lin, Y.-J. Fang, A.-L. Cheng, and S.-H. Kuo, “Parvovirus B19 infection-related acute hepatitis after rituximab-containing regimen for treatment of diffuse large B-cell lymphoma,” Annals of Hematology, vol. 91, no. 2, pp. 291–294, 2012.
[21]  L. Sun, J.-C. Zhang, and Z.-S. Jia, “Association of parvovirus B19 infection with acute icteric hepatitis in adults,” Scandinavian Journal of Infectious Diseases, vol. 43, no. 6-7, pp. 547–549, 2011.
[22]  N. Al Nahdi, H. Wiesinger, H. Sutherland, and E. M. Yoshida, “Recurrent idiopathic acute hepatitis-associated aplastic anemia/pancytopenia fourteen years after initial episode,” Annals of Hepatology, vol. 9, no. 4, pp. 468–470, 2010.
[23]  T. H. Mogensen, J. M. B. Jensen, S. Hamilton-Dutoit, and C. S. Larsen, “Chronic hepatitis caused by persistent parvovirus B19 infection,” BMC Infectious Diseases, vol. 10, article 246, 2010.
[24]  C. Wang, A. Heim, V. Schlaphoff et al., “Intrahepatic long-term persistence of parvovirus B19 and its role in chronic viral hepatitis,” Journal of Medical Virology, vol. 81, no. 12, pp. 2079–2088, 2009.
[25]  D. S. Krygier, U. P. Steinbrecher, M. Petric et al., “Parvovirus B19 induced hepatic failure in an adult requiring liver transplantation,” World Journal of Gastroenterology, vol. 15, no. 32, pp. 4067–4069, 2009.
[26]  B. J. Kim, K. H. Yoo, K. Li, and M. N. Kim, “Parvovirus B19 infection associated with acute hepatitis in infant,” Pediatric Infectious Disease Journal, vol. 28, no. 7, article 667, 2009.
[27]  G. Pongratz, J. Lindner, S. Modrow, S. Schimanski, J. Sch?lmerich, and M. Fleck, “Persistent parvovirus B19 infection detected by specific CD4+ T-cell responses in a patient with hepatitis and polyarthritis,” Journal of Internal Medicine, vol. 266, no. 3, pp. 296–301, 2009.
[28]  Y.-H. Cao, G.-Y. Zhang, and G.-C. Zhang, “Successful treatment with high-dose intravenous immunoglobulin for parvovirus B19 infection associated with acute fulminant hepatitis in a chinese child,” Clinical Pediatrics, vol. 48, no. 6, pp. 674–676, 2009.
[29]  J. Kishore and M. Sen, “Parvovirus B19-induced thrombocytopenia and anemia in a child with fatal fulminant hepatic failure coinfected with hepatitis A and E viruses,” Journal of Tropical Pediatrics, vol. 55, no. 5, pp. 335–337, 2009.
[30]  R. M. Al-Abdwani, F. A. Khamis, A. Balkhair, M. Sacharia, and Y. A. Wali, “A child with human parvovirus B19 infection induced aplastic anemia and acute hepatitis: effectiveness of immunosuppressive therapy,” Pediatric Hematology and Oncology, vol. 25, no. 7, pp. 699–703, 2008.
[31]  B. Gi?rtz-Carlsen, S. Rittig, and T. Thelle, “Neurological symptoms and acute hepatitis associated with parvovirus B19,” Ugeskrift for Laeger, vol. 169, no. 47, pp. 4075–4077, 2007.
[32]  F. ?z?ay, Y. E. Bikmaz, O. Canan, and N. ?zbek, “Hepatitis A and parvovirus B19 infections in an infant with fulminant hepatic failure,” Turkish Journal of Gastroenterology, vol. 17, no. 2, pp. 148–150, 2006.
[33]  M. Aydin, Y. Bulut, G. Poyrazoglu, M. Turgut, and A. Seyrek, “Detection of human parvovirus B19 in children with acute hepatitis,” Annals of Tropical Paediatrics, vol. 26, no. 1, pp. 25–28, 2006.
[34]  M. Toshihiro, Y. Takikawa, Y. Fukuda, S.-I. Sato, R. Endou, and K. Suzuki, “A case of acute hepatitis associated with Parvovirus B19,” Japanese Journal of Gastroenterology, vol. 100, no. 11, pp. 1312–1316, 2003.
[35]  A. Chehal, A. I. Sharara, H. A. Haidar, J. Haidar, and A. Bazarbachi, “Acute viral hepatitis A and parvovirus B19 infections complicated by pure red cell aplasia and autoimmune hemolytic anemia,” Journal of Hepatology, vol. 37, no. 1, pp. 163–165, 2002.
[36]  C. Dame, C. Hasan, U. Bode, and A. M. Eis-Hübinger, “Acute liver disease and aplastic anemia associated with the persistence of B19 DNA in liver and bone marrow,” Pediatric Pathology and Molecular Medicine, vol. 21, no. 1, pp. 25–29, 2002.
[37]  F. Díaz and J. Collazos, “Hepatic dysfunction due to parvovirus B19 infection,” Journal of Infection and Chemotherapy, vol. 6, no. 1, pp. 63–64, 2000.
[38]  P. C. Lee, C. J. Hung, H. Y. Lei, T. T. Chang, J. R. Wang, and M. S. Jan, “Parvovirus B19-related hepatitis in an immunosuppressed kidney transplant,” Nephrology Dialysis Transplantation, vol. 15, pp. 1486–1488, 2000.
[39]  J. R. R. Pinho, V. A. F. Alves, A. F. Vieira et al., “Detection of human parvovirus B19 in a patient with hepatitis,” Brazilian Journal of Medical and Biological Research, vol. 34, no. 9, pp. 1131–1138, 2001.
[40]  Y.-S. Shan, P.-C. Lee, J.-R. Wang, H.-P. Tsai, C.-M. Sung, and Y.-T. Jin, “Fibrosing cholestatic hepatitis possibly related to persistent parvovirus B19 infection in a renal transplant recipient,” Nephrology Dialysis Transplantation, vol. 16, no. 12, pp. 2420–2422, 2001.
[41]  C. Alliot, M. Barrios, J. Taib, and M. Brunel, “Parvovirus B19 infection in an HIV-infected patient with febrile pancytopenia and acute hepatitis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 20, no. 1, pp. 43–45, 2001.
[42]  Y. V. Karetnyi, P. R. Beck, R. S. Markin, A. N. Langnas, and S. J. Naides, “Human parvovirus B19 infection in acute fulminant liver failure,” Archives of Virology, vol. 144, no. 9, pp. 1713–1724, 1999.
[43]  F. Drago, M. Semino, P. Rampini, and A. Rebora, “Parvovirus B19 infection associated with acute hepatitis and a purpuric exanthem,” British Journal of Dermatology, vol. 141, no. 1, pp. 160–161, 1999.
[44]  E. M. Sokal, M. Melchior, C. Cornu et al., “Acute parvovirus B19 infection associated with fulminant hepatitis of favourable prognosis in young children,” The Lancet, vol. 352, no. 9142, pp. 1739–1741, 1998.
[45]  J. G. Hillings?, I. P. Jensen, and L. Tom-Petersen, “Parvovirus B19 as causative agent of acute hepatitis in adults,” Ugeskrift for Laeger, vol. 160, no. 44, pp. 6355–6356, 1998.
[46]  J. G. Hillings?, I. P. Jensen, and L. Tom-Petersen, “Parvovirus B19 and acute hepatitis in adults,” The Lancet, vol. 351, no. 9107, pp. 955–956, 1998.
[47]  G. Longo, M. Luppi, M. Bertesi, L. Ferrara, G. Torelli, and G. Emilia, “Still's disease, severe thrombocytopenia, and acute hepatitis associated with acute parvovirus B19 infection,” Clinical Infectious Diseases, vol. 26, no. 4, pp. 994–995, 1998.
[48]  D. S. Pardi, Y. Romero, L. E. Mertz, and D. D. Douglas, “Hepatitis-associated aplastic anemia and acute parvovirus B19 infection: a report of two cases and a review of the literature,” The American Journal of Gastroenterology, vol. 93, no. 3, pp. 468–470, 1998.
[49]  J. M. Weinberg, J. T. Wolfe, A. L. Frattali, V. P. Werth, S. J. Naides, and E. M. Spiers, “Parvovirus B19 infection associated with acute hepatitis, arthralgias, and rash,” Journal of Clinical Rheumatology, vol. 2, no. 2, pp. 85–88, 1996.
[50]  S. J. Naides, Y. V. Karetnyi, L. L. W. Cooling et al., “Human parvovirus B19 infection and hepatitis,” The Lancet, vol. 347, no. 9014, pp. 1563–1564, 1996.
[51]  Y. Yoto, T. Kudoh, K. Haseyama, N. Suzuki, and S. Chiba, “Human parvovirus B19 infection associated with acute hepatitis,” The Lancet, vol. 347, no. 9005, pp. 868–869, 1996.
[52]  A. N. Langnas, R. S. Markin, M. S. Cattral, and S. J. Naides, “Parvovirus B19 as a possible causative agent of fulminant liver failure and associated aplastic anemia,” Hepatology, vol. 22, no. 6, pp. 1661–1665, 1995.
[53]  J. Pouchot, H. Ouakil, M. L. Debin, and P. Vinceneux, “Adult Still's disease associated with acute human parvovirus B19 infection,” The Lancet, vol. 341, no. 8855, pp. 1280–1281, 1993.
[54]  N. L. Toan, L. H. Song, P. G. Kremsner et al., “Co-infection of human parvovirus B19 in Vietnamese patients with hepatitis B virus infection,” Journal of Hepatology, vol. 45, no. 3, pp. 361–369, 2006.
[55]  T.-C. Hsu, T.-Y. Chen, M.-C. Lin, B.-S. Tzang, and G. J. Tsay, “Human parvovirus B19 infection in patients with chronic hepatitis B or hepatitis C infection,” Journal of Gastroenterology and Hepatology, vol. 20, no. 5, pp. 733–738, 2005.
[56]  M. Dwivedi, H. Manocha, S. Tiwari, G. Tripathi, and T. N. Dhole, “Coinfection of parvovirus b19 with other hepatitis viruses leading to fulminant hepatitis of unfavorable outcome in children,” The Pediatric Infectious Disease Journal, vol. 28, no. 7, pp. 649–650, 2009.
[57]  Y. Osugi, H. Yagasaki, M. Sako et al., “Antithymocyte globulin and cyclosporine for treatment of 44 children with hepatitis associated aplastic anemia,” Haematologica, vol. 92, no. 12, pp. 1687–1690, 2007.
[58]  B. Rauff, M. Idrees, S. A. R. Shah et al., “Hepatitis associated aplastic anemia: a review,” Virology Journal, vol. 8, article 87, 2011.
[59]  R. Andreesen, W. Brugger, C. Thomssen, A. Rehm, B. Speck, and G. W. Lohr, “Defective monocyte-to-macrophage maturation in patients with aplastic anemia,” Blood, vol. 74, no. 6, pp. 2150–2156, 1989.
[60]  T. Muta, Y. Tanaka, E. Takeshita et al., “Recurrence of hepatitis-associated aplastic anemia after a 10-year Interval,” Internal Medicine, vol. 47, no. 19, pp. 1733–1737, 2008.
[61]  M. E. S. Zaki, S. A. Hassan, T. Seleim, and R. A. Lateef, “Parvovirus B19 infection in children with a variety of hematological disorders,” Hematology, vol. 11, no. 4, pp. 261–266, 2006.
[62]  S. Serke, T. F. Schwarz, H. Baurmann et al., “Productive infection of in vitro generated haemopoietic progenitor cells from normal human adult peripheral blood with parvovirus B19: studies by morphology, immunocytochemistry, flow-cytometry and DNA-hybridization,” British Journal of Haematology, vol. 79, no. 1, pp. 6–13, 1991.
[63]  T. Kudoh, Y. Yoto, N. Suzuki et al., “Human parvovirus B19-induced aplastic crisis in iron deficiency anemia,” Acta Paediatrica Japonica, vol. 36, no. 4, pp. 448–449, 1994.
[64]  G. Janka, “Hemophagocytic lymphohistiocytosis: when the immune system runs amok,” Klinische Padiatrie, vol. 221, no. 5, pp. 278–285, 2009.
[65]  M. P. Hoang, D. B. Dawson, Z. R. Rogers, R. H. Scheuermann, and B. B. Rogers, “Polymerase chain reaction amplification of archival material for Epstein-Barr virus, cytomegalovirus, human herpesvirus 6, and parvovirus B19 in children with bone marrow hemophagocytosis,” Human Pathology, vol. 29, no. 10, pp. 1074–1077, 1998.
[66]  K. Shirono and H. Tsuda, “Parvovirus B19-associated haemophagocytic syndrome in healthy adults,” British Journal of Haematology, vol. 89, no. 4, pp. 923–926, 1995.
[67]  I.-J. Su, C.-H. Wang, A.-L. Cheng, and R.-L. Chen, “Hemophagocytic syndrome in Epstein-Barr virus-associated T-lymphoproliferative disorders: disease spectrum, pathogenesis, and management,” Leukemia and Lymphoma, vol. 19, no. 5-6, pp. 401–406, 1995.
[68]  M. M. Mustafa and K. L. McClain, “Diverse hematologic effects of parvovirus B19 infection,” Pediatric Clinics of North America, vol. 43, no. 3, pp. 809–821, 1996.
[69]  K. Smith-Whitley, H. Zhao, R. L. Hodinka et al., “Epidemiology of human parvovirus B19 in children with sickle cell disease,” Blood, vol. 103, no. 2, pp. 422–427, 2004.
[70]  The American Academy of Pediatrics Committee on Infectious Diseases, “Parvovirus B19,” in Red Book: Report of the Committee on Infectious Diseases, L. K. Pickering, C. J. Baker, D. W. Kimberlin, and S. S. Long, Eds., pp. 491–493, The American Academy of Peiatrics, Elk Grove Village, Ill, USA, 28th edition, 2009.
[71]  C. K. Fairley, J. S. Smoleniec, O. E. Caul, and E. Miller, “Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection,” The Lancet, vol. 346, no. 8986, pp. 1335–1337, 1995.
[72]  M. S?derlund-Venermo, K. Hokynar, J. Nieminen, H. Rautakorpi, and K. Hedman, “Persistence of human parvovirus B19 in human tissues,” Pathologie Biologie, vol. 50, no. 5, pp. 307–316, 2002.
[73]  G. L. Mandell, J. E. Bennet, and R. Dolin, Mandell, Douglas and Bennett's Principals and Practice of Infectious Diseases, vol. 2, Churchill Livingstone, Philadelphia, Pa, USA, 6th edition, 2005.
[74]  E. Morita, A. Nakashima, H. Asao, H. Sato, and K. Sugamura, “Human parvovirus B19 nonstructural protein (NS1) induces cell cycle arrest at G1 phase,” Journal of Virology, vol. 77, no. 5, pp. 2915–2921, 2003.
[75]  L. L. W. Cooling, T. A. W. Koerner, and S. J. Naides, “Multiple glycosphingolipids determine the tissue tropism of parvovirus B19,” Journal of Infectious Diseases, vol. 172, no. 5, pp. 1198–1205, 1995.
[76]  B. D. Poole, Y. V. Karetnyi, and S. J. Naides, “Parvovirus B19-induced apoptosis of hepatocytes,” Journal of Virology, vol. 78, no. 14, pp. 7775–7783, 2004.
[77]  N. S. Young and J. Maciejewski, “The pathophysiology of acquired aplastic anemia,” The New England Journal of Medicine, vol. 336, no. 19, pp. 1365–1372, 1997.
[78]  K. Doney, W. Leisenring, R. Storb, and F. R. Appelbaum, “Primary treatment of acquired aplastic anemia: outcomes with bone marrow transplantation and immunosuppressive therapy,” Annals of Internal Medicine, vol. 126, no. 2, pp. 107–115, 1997.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413