Objective. Pyelonephritis is a common infectious morbidity of pregnancy. Though anemia is commonly associated with pyelonephritis, there are little data describing the effect of pyelonephritis with anemia on pregnancy outcomes. The purpose of this study was to further assess the association of anemia with infectious morbidity and pregnancy complications among women with pyelonephritis. Study Design. We conducted a retrospective cohort study of pregnant women admitted to Duke University Hospital between July 2006 and May 2012 with pyelonephritis. Demographic, laboratory, and clinical data from the subject’s pregnancy and hospitalizations were analyzed. Patients with pyelonephritis and anemia (a hematocrit < 32) were compared to those without anemia. Descriptive statistics were used to compare the two groups. Results. 114 pregnant women were admitted with pyelonephritis and 45 (39.5%) had anemia on admission. There was no significant difference in age, race, preexisting medical conditions, or urine bacterial species between patients with anemia and those without. Women with anemia were more likely to deliver preterm (OR 3.3 (95% CI 1.07, 11.4), ). When controlling for race and history of preterm delivery, women with anemia continued to have increased odds of preterm birth (OR 6.0, CI 1.4, 35, ). Conclusion. Women with pyelonephritis and anemia are at increased risk for preterm delivery. 1. Introduction Pyelonephritis is the most common nonobstetric indication for antepartum admissions. Upper urinary tract infection complicates 1%-2% of pregnancies and has the potential to cause severe maternal and fetal morbidity [1–3]. The physiologic changes of pregnancy, including decreased ureteral peristalsis, mechanical compression of the ureters, decreased detrusor tone, and incomplete bladder emptying, may predispose pregnant woman to pyelonephritis. Anemia is a commonly described complication of pyelonephritis [1–6]. The physiology of this association is poorly understood. Confusing the picture is the fact that anemia itself is a common complication of pregnancy and is associated with preterm delivery and small for gestational age infants [7, 8]. Theories regarding the etiology of pyelonephritis-associated anemia include overhydration at diagnosis, endotoxin mediated hemolysis, renal erythropoietin suppression, and anemia of chronic disease [4, 9–11]. Despite the known association of pyelonephritis with anemia, there are minimal data describing the effects of anemia related to pyelonephritis on pregnancy outcomes. This study was initiated to evaluate pregnancies
References
[1]
L. C. Gilstrap III, F. G. Cunningham, and P. J. Whalley, “Acute pyelonephritis in pregnancy: an anterospective study,” Obstetrics and Gynecology, vol. 57, no. 4, pp. 409–413, 1981.
[2]
J. B. Hill, J. S. Sheffield, D. D. McIntire, and G. D. Wendel Jr., “Acute pyelonephritis in pregnancy,” Obstetrics and Gynecology, vol. 105, no. 1, pp. 18–23, 2005.
[3]
P. Sharma and L. Thapa, “Acute pyelonephritis in pregnancy: a retrospective study,” Australian and New Zealand Journal of Obstetrics & Gynaecology, vol. 47, no. 4, pp. 313–315, 2007.
[4]
P. Duff, “Pyelonephritis in pregnancy,” Clinical Obstetrics and Gynecology, vol. 27, no. 1, pp. 17–31, 1984.
[5]
S. G. Gabbe, Obstetrics Normal and Problem Pregnancies, Elsevier/Saunders, Philadelphia, Pa, USA, 6th edition, 2012.
[6]
D. A. Wing, “Pyelonephritis,” Clinical Obstetrics and Gynecology, vol. 41, no. 3, pp. 515–526, 1998.
[7]
K. S. Scanlon, R. Yip, L. A. Schieve, and M. E. Cogswell, “High and low hemoglobin levels during pregnancy: differential risks for preterm birth and small for gestational age,” Obstetrics and Gynecology, vol. 96, no. 5, pp. 741–748, 2000.
[8]
X. Xiong, P. Buekens, S. Alexander, N. Demianczuk, and E. Wollast, “Anemia during pregnancy and birth outcome: a meta-analysis,” American Journal of Perinatology, vol. 17, no. 3, pp. 137–146, 2000.
[9]
M. R. Cavenee, S. M. Cox, R. Mason, and F. G. Cunningham, “Erythropoietin in pregnancies complicated by pyelonephritis,” Obstetrics and Gynecology, vol. 84, no. 2, pp. 252–254, 1994.
[10]
S. M. Cox, P. Shelburne, R. Mason, S. Guss, and F. G. Cunningham, “Mechanisms of hemolysis and anemia associated with acute antepartum pyelonephritis,” American Journal of Obstetrics and Gynecology, vol. 164, no. 2, pp. 587–590, 1991.
[11]
M. J. Lucas and F. G. Cunningham, “Urinary infection in pregnancy,” Clinical Obstetrics and Gynecology, vol. 36, no. 4, pp. 855–868, 1993.
[12]
K. L. Archabald, A. Friedman, C. A. Raker, and B. L. Anderson, “Impact of trimester on morbidity of acute pyelonephritis in pregnancy,” American Journal of Obstetrics and Gynecology, vol. 201, no. 4, pp. 406-e1–406-e6, 2009.
[13]
L. Reveiz, G. M. Gyte, L. G. Cuervo, and A. Casasbuenas, “Treatments for iron-deficiency anaemia in pregnancy,” Cochrane Database of Systematic Reviews, no. 10, Article ID CD003094, 2011.
[14]
J. C. Dawkins, H. M. Fletcher, C. A. Rattray, M. Reid, and G. Gordon-Strachan, “Acute pyelonephritis in pregnancy: a retrospective descriptive hospital based-study,” ISRN Obstetrics and Gynecology, vol. 2012, Article ID 519321, 6 pages, 2012.
[15]
E. Farkash, A. Y. Weintraub, R. Sergienko, A. Wiznitzer, A. Zlotnik, and E. Sheiner, “Acute antepartum pyelonephritis in pregnancy: a critical analysis of risk factors and outcomes,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 162, no. 1, pp. 24–27, 2012.
[16]
F. G. Cunningham and J. W. Williams, Williams Obstetrics, McGraw-Hill Medical, New York, NY, USA, 23rd edition, 2010.
[17]
K. F. Fairley, A. G. Bond, and F. D. Adey, “The site of infection in pregnancy bacteriuria,” The Lancet, vol. 1, no. 7444, pp. 939–941, 1966.
[18]
M. Turck, A. R. Ronald, and R. G. Petersdorf, “Relapse and reinfection in chronic bacteriuria. II. The correlation between site of infection and pattern of recurrence in chronic bacteriuria,” The New England Journal of Medicine, vol. 278, no. 8, pp. 422–427, 1968.
[19]
R. T. Means Jr. and S. B. Krantz, “Progress in understanding the pathogenesis of the anemia of chronic disease,” Blood, vol. 80, no. 7, pp. 1639–1647, 1992.
[20]
R. T. Means Jr. and S. B. Krantz, “Inhibition of human erythroid colony-forming units by tumor necrosis factor requires beta interferon,” The Journal of Clinical Investigation, vol. 91, no. 2, pp. 416–419, 1993.
[21]
P. V. Voulgari, G. Kolios, G. K. Papadopoulos, A. Katsaraki, K. Seferiadis, and A. A. Drosos, “Role of cytokines in the pathogenesis of anemia of chronic disease in rheumatoid arthritis,” Clinical Immunology, vol. 92, no. 2, pp. 153–160, 1999.
[22]
M. T. Gervasi, R. Romero, G. Bracalente, et al., “Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery,” Journal of Perinatal Medicine, vol. 40, no. 4, pp. 329–343, 2012.
[23]
N. Vrachnis, S. Karavolos, Z. Iliodromiti, et al., “Review: impact of mediators present in amniotic fluid on preterm labour,” In Vivo, vol. 26, no. 5, pp. 799–812, 2012.
[24]
T. Weissenbacher, R. P. Laubender, S. S. Witkin, et al., “Diagnostic biomarkers of pro-inflammatory immune-mediated preterm birth,” Archives of Gynecology and Obstetrics, vol. 287, no. 4, pp. 673–685, 2013.
[25]
Q. Zhang, C. V. Ananth, Z. Li, and J. C. Smulian, “Maternal anaemia and preterm birth: a prospective cohort study,” International Journal of Epidemiology, vol. 38, no. 5, pp. 1380–1389, 2009.
[26]
A. Levy, D. Fraser, M. Katz, M. Mazor, and E. Sheiner, “Maternal anemia during pregnancy is an independent risk factor for low birthweight and preterm delivery,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 122, no. 2, pp. 182–186, 2005.
[27]
J. A. Jolley, S. Kim, and D. A. Wing, “Acute pyelonephritis and associated complications during pregnancy in 2006 in US hospitals,” The Journal of Maternal-Fetal & Neonatal Medicine, vol. 25, no. 12, pp. 2494–2498.