全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HPV Infection: Immunological Aspects and Their Utility in Future Therapy

DOI: 10.1155/2013/540850

Full-Text   Cite this paper   Add to My Lib

Abstract:

High prevalence and mortality rates of cervical cancer create an imperative need to clarify the uniqueness of HPV (Human Papillomavirus) infection, which serves as the key causative factor in cervical malignancies. Understanding the immunological details and the microenvironment of the infection can be a useful tool for the development of novel therapeutic interventions. Chronic infection and progression to carcinogenesis are sustained by immortalization potential of HPV, evasion techniques, and alterations in the microenvironment of the lesion. Inside the lesion, Toll-like receptors expression becomes irregular; Langerhans cells fail to present the antigens efficiently, tumor-associated macrophages aggregate resulting in an unsuccessful immune response by the host. HPV products also downregulate the expression of microenvironment components which are necessary for natural-killer cells response and antigen presentation to cytotoxic cells. Additionally HPV promotes T-helper cell 2 (Th2) and T-regulatory cell phenotypes and reduces Th1 phenotype, leading to suppression of cellular immunity and lesion progression to cancer. Humoral response after natural infection is inefficient, and neutralizing antibodies are not adequate in many women. Utilizing this knowledge, new endeavors, such as therapeutic vaccination, aim to stimulate cellular immune response against the virus and alter the milieu of the lesion. 1. Introduction All sexually active individuals are liable to HPV infection during sexual intercourse. It is assessed that the risk of sexually active women to be infected sometime in their life is nearly 80% [1]. HPV infection alone is not adequate for the advancement to cervical cancer and other risk conditions such as smoking, prolonged oral contraception consumption, coinfections, and multiparity, immune-related diseases appear to lead the infection on the route of carcinogenesis [2–5]. The vast majority (90%) of HPV infections are cleared by the patients’ immune system in three-year followup, whereas from the 10% that become chronic only 1% result in cervical cancer. The infection is usually clinically silent with absence of common genital symptoms, but it can be manifested with a spectrum of lesions from genital warts to invasive cancer [6]. Suppression of host immunity, persistence of the infection, and integration of the virus into the host DNA help a low grade squamous intraepithelial lesion (LSIL) to step up to high grade squamous intraepithelial lesion (HSIL) and even to invasive carcinoma of the cervix [7]. 2. Materials and Methods We

References

[1]  CDC, Epidemiology and Prevention of Vaccine-Preventable Diseases, The pink book, 12th edition, 2012.
[2]  K. E. Jensen, S. Schmiedel, B. Norrild, K. Frederiksen, T. Iftner, and S. K. Kjaer, “Parity as a cofactor for high-grade cervical disease among women with persistent human papillomavirus infection: a 13-year follow-up,” British Journal of Cancer, vol. 108, no. 1, pp. 234–239, 2012.
[3]  J. I. C. Romero, C. H. Girón, and V. M. Marina, “Hormonal contraception as a risk factor for cancer prevention: biological evidence, immunological and epidemiological,” Ginecologia y Obstetricia de Mexico, vol. 79, no. 9, pp. 533–539, 2011.
[4]  P. Luhn, J. Walker, M. Schiffman, et al., “The role of co-factors in the progression from human papillomavirus infection to cervical cancer,” Gynecologic Oncology, vol. 128, no. 2, pp. 265–270, 2013.
[5]  J. S. Smith, R. Herrero, C. Bosetti et al., “Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer,” Journal of the National Cancer Institute, vol. 94, no. 21, pp. 1604–1613, 2002.
[6]  C. Mao, J. P. Hughes, N. Kiviat et al., “Clinical findings among young women with genital human papillomavirus infection,” American Journal of Obstetrics and Gynecology, vol. 188, no. 3, pp. 677–684, 2003.
[7]  K. A. Ault, “Epidemiology and natural history of human papillomavirus infections in the female genital tract,” Infectious Diseases in Obstetrics and Gynecology, vol. 2006, Article ID 40470, 5 pages, 2006.
[8]  H.-U. Bernard, R. D. Burk, Z. Chen, K. van Doorslaer, H. Z. Hausen, and E.-M. de Villiers, “Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments,” Virology, vol. 401, no. 1, pp. 70–79, 2010.
[9]  J. S. Smith, L. Lindsay, B. Hoots et al., “Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update,” International Journal of Cancer, vol. 121, no. 3, pp. 621–632, 2007.
[10]  M. E. Scheurer, G. Tortolero-Luna, and K. Adler-Storthz, “Human papillomavirus infection: biology, epidemiology, and prevention,” International Journal of Gynecological Cancer, vol. 15, no. 5, pp. 727–746, 2005.
[11]  M. S. Longworth and L. A. Laimins, “Pathogenesis of human papillomaviruses in differentiating epithelia,” Microbiology and Molecular Biology Reviews, vol. 68, no. 2, pp. 362–372, 2004.
[12]  B. Zhang, D. F. Spandau, and A. Roman, “E5 protein of human papillomavirus type 16 protects human foreskin keratinocytes from UV B-irradiation-induced apoptosis,” Journal of Virology, vol. 76, no. 1, pp. 220–231, 2002.
[13]  H. Zur Hausen, “Papillomaviruses and cancer: from basic studies to clinical application,” Nature Reviews Cancer, vol. 2, no. 5, pp. 342–350, 2002.
[14]  K. Münger and P. M. Howley, “Human papillomavirus immortalization and transformation functions,” Virus Research, vol. 89, no. 2, pp. 213–228, 2002.
[15]  R. Faridi, A. Zahra, K. Khan, and M. Idrees, “Oncogenic potential of human papillomavirus (HPV) and its relation with cervical cancer,” Virology Journal, vol. 8, article 269, 2011.
[16]  J. G. Joyce, J.-S. Tung, C. T. Przysiecki et al., “The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes,” Journal of Biological Chemistry, vol. 274, no. 9, pp. 5810–5822, 1999.
[17]  T. Giroglou, L. Florin, F. Sch?fer, R. E. Streeck, and M. Sapp, “Human papillomavirus infection requires cell surface heparan sulfate,” Journal of Virology, vol. 75, no. 3, pp. 1565–1570, 2001.
[18]  M. Sapp and M. Bienkowska-Haba, “Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus,” FEBS Journal, vol. 276, no. 24, pp. 7206–7216, 2009.
[19]  T. D. Culp, L. R. Budgeon, M. Peter Marinkovich, G. Meneguzzi, and N. D. Christensen, “Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells,” Journal of Virology, vol. 80, no. 18, pp. 8940–8950, 2006.
[20]  J. T. Schiller, P. M. Day, and R. C. Kines, “Current understanding of the mechanism of HPV infection,” Gynecologic Oncology, vol. 118, no. 1, supplement, pp. S12–S17, 2010.
[21]  R. M. Richards, D. R. Lowy, J. T. Schiller, and P. M. Day, “Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1522–1527, 2006.
[22]  M. Evander, I. H. Frazer, E. Payne, Y. M. Qi, K. Hengst, and N. A. J. McMillan, “Identification of the α6 integrin as a candidate receptor for papillomaviruses,” Journal of Virology, vol. 71, no. 3, pp. 2449–2456, 1997.
[23]  T. D. Culp and N. D. Christensen, “Kinetics of in vitro adsorption and entry of papillomavirus virions,” Virology, vol. 319, no. 1, pp. 152–161, 2004.
[24]  H.-C. Selinka, T. Giroglou, and M. Sapp, “Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions,” Virology, vol. 299, no. 2, pp. 279–287, 2002.
[25]  D. Pyeon, S. M. Pearce, S. M. Lank, P. Ahlquist, and P. F. Lambert, “Establishment of human papillomavirus infection requires cell cycle progression,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000318, 2009.
[26]  L. Florin, F. Sch?fer, K. Sotlar, R. E. Streeck, and M. Sapp, “Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2,” Virology, vol. 295, no. 1, pp. 97–107, 2002.
[27]  S. L. Giannini, P. Hubert, J. Doyen, J. Boniver, and P. Delvenne, “Influence of the mucosal epithelium microenvironment on Langerhans cells: implications for the development of squamous intraepithelial lesions of the cervix,” International Journal of Cancer, vol. 97, no. 5, pp. 654–659, 2002.
[28]  F. Mota, N. Rayment, S. Chong, A. Singer, and B. Chain, “The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium,” Clinical and Experimental Immunology, vol. 116, no. 1, pp. 33–40, 1999.
[29]  S. Kanodia, L. M. Fahey, and W. M. Kast, “Mechanisms used by human papillomaviruses to escape the host immune response,” Current Cancer Drug Targets, vol. 7, no. 1, pp. 79–89, 2007.
[30]  M. Stanley, “Immune responses to human papillomavirus,” Vaccine, vol. 24, no. 1, supplement, pp. 16–22, 2006.
[31]  J. Doorbar, “The papillomavirus life cycle,” Journal of Clinical Virology, vol. 32, supplement, pp. S7–S15, 2005.
[32]  M. Stanley, “Immunobiology of HPV and HPV vaccines,” Gynecologic Oncology, vol. 109, no. 2, supplement, pp. S15–S21, 2008.
[33]  A. Manickam, M. Sivanandham, and I. Tourkova, “Immunological role of dendritic cells in cervical cancer,” in Immune-Mediated Diseases, M. Shurin and Y. Smolkin, Eds., pp. 155–162, Springer, New York, NY, USA, 2007.
[34]  S. K. Tay, D. Jenkins, and P. Maddox, “Subpopulations of Langerhans' cells in cervical neoplasia,” British Journal of Obstetrics and Gynaecology, vol. 94, no. 1, pp. 10–15, 1987.
[35]  S. C. Fausch, D. M. Da Silva, and W. M. Kast, “Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells,” Cancer Research, vol. 63, no. 13, pp. 3478–3482, 2003.
[36]  S. Akira and K. Takeda, “Toll-like receptor signalling,” Nature Reviews Immunology, vol. 4, no. 7, pp. 499–511, 2004.
[37]  C. A. DeCarlo, B. Rosa, R. Jackson, S. Niccoli, N. G. Escott, and I. Zehbe, “Toll-like receptor transcriptome in the HPV-positive cervical cancer microenvironment,” Clinical and Developmental Immunology, vol. 2012, Article ID 785825, 9 pages, 2012.
[38]  U. A. Hasan, E. Bates, F. Takeshita et al., “TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16,” Journal of Immunology, vol. 178, no. 5, pp. 3186–3197, 2007.
[39]  C. A. Decarlo, A. Severini, L. Edler et al., “IFN-κ, a novel type i IFN, is undetectable in HPV-positive human cervical keratinocytes,” Laboratory Investigation, vol. 90, no. 10, pp. 1482–1491, 2010.
[40]  B. Rincon-Orozco, G. Halec, S. Rosenberger et al., “Epigenetic silencing of interferon-κ in human papillomavirus type 16-positive cells,” Cancer Research, vol. 69, no. 22, pp. 8718–8725, 2009.
[41]  C. Mohan and J. Zhu, “Toll-like receptor signaling pathways—therapeutic opportunities,” Mediators of Inflammation, vol. 2010, Article ID 781235, 7 pages, 2010.
[42]  E. Y. So and T. Ouchi, “The application of toll like receptors for cancer therapy,” International Journal of Biological Sciences, vol. 6, no. 7, pp. 675–681, 2010.
[43]  K. Hacke, B. Rincon-Orozco, G. Buchwalter et al., “Regulation of MCP-1 chemokine transcription by p53,” Molecular Cancer, vol. 9, article 82, 2010.
[44]  J. C. Guess and D. J. McCance, “Decreased migration of Langerhans precursor-like cells in response to human keratinocytes expressing human papillomavirus type 16 E6/E7 is related to reduced macrophage inflammatory protein-3α production,” Journal of Virology, vol. 79, no. 23, pp. 14852–14862, 2005.
[45]  F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009.
[46]  J. Mazibrada, M. Rittà, M. Mondini et al., “Interaction between inflammation and angiogenesis during different stages of cervical carcinogenesis,” Gynecologic Oncology, vol. 108, no. 1, pp. 112–120, 2008.
[47]  J. G. Quatromoni and E. Eruslanov, “Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer,” American Journal of Translational Research, vol. 4, no. 4, pp. 376–389, 2012.
[48]  X. Tang, C. Mo, Y. Wang, D. Wei, and H. Xiao, “Anti-tumour strategies aiming to target tumour-associated macrophages,” Immunology, vol. 138, no. 2, pp. 93–104, 2013.
[49]  L. S. Hammes, R. R. Tekmal, P. Naud et al., “Macrophages, inflammation and risk of cervical intraepithelial neoplasia (CIN) progression-Clinicopathological correlation,” Gynecologic Oncology, vol. 105, no. 1, pp. 157–165, 2007.
[50]  A. P. Lepique, K. R. P. Daghastanli, I. Cuccovia, and L. L. Villa, “HPV16 tumor associated macrophages suppress antitumor T cell responses,” Clinical Cancer Research, vol. 15, no. 13, pp. 4391–4400, 2009.
[51]  A. Bolpetti, J. S. Silva, L. L. Villa, and A. P. Lepique, “Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth,” BMC Immunology, vol. 11, article 27, 2010.
[52]  T. Garcia-Iglesias, A. del Toro-Arreola, B. Albarran-Somoza et al., “Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions,” BMC Cancer, vol. 9, article 186, 2009.
[53]  T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, “Two types of murine helper T cell clone—I. Definition according to profiles of lymphokine activities and secreted proteins. 1986,” Journal of immunology, vol. 175, no. 1, pp. 5–14, 2005.
[54]  J. Zhu and W. E. Paul, “CD4 T cells: fates, functions, and faults,” Blood, vol. 112, no. 5, pp. 1557–1569, 2008.
[55]  J. C. Steele, C. H. Mann, S. Rookes et al., “T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia,” British Journal of Cancer, vol. 93, no. 2, pp. 248–259, 2005.
[56]  M. Clerici, M. Merola, E. Ferrario et al., “Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection,” Journal of the National Cancer Institute, vol. 89, no. 3, pp. 245–250, 1997.
[57]  B. C. Peghini, D. R. Abdalla, A. C. Barcelos, L. Teodoro, E. F. Murta, and M. A. Michelin, “Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia,” Human Immunology, vol. 73, no. 9, pp. 920–926, 2012.
[58]  A. Kobayashi, V. Weinberg, T. Darragh, and K. Smith-McCune, “Evolving immunosuppressive microenvironment during human cervical carcinogenesis,” Mucosal Immunology, vol. 1, no. 5, pp. 412–420, 2008.
[59]  K. D. Chirgwin, J. Feldman, M. Augenbraun, S. Landesman, and H. Minkoff, “Incidence of venereal warts in human immunodeficiency virus-infected and uninfected women,” Journal of Infectious Diseases, vol. 172, no. 1, pp. 235–238, 1995.
[60]  R. G. Fruchter, M. Maiman, C. D. Arrastia, R. Matthews, E. J. Gates, and K. Holcomb, “Is HIV infection a risk factor for advanced cervical cancer?” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 18, no. 3, pp. 241–245, 1998.
[61]  M. Scott, M. Nakagawa, and A.-B. Moscicki, “Cell-mediated immune response to human papillomavirus infection,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 2, pp. 209–220, 2001.
[62]  A. Vambutas, J. DeVoti, W. Pinn, B. M. Steinberg, and V. R. Bonagura, “Interaction of human papillomavirus type 11 E7 protein with TAP-1 results in the reduction of ATP-dependent peptide transport,” Clinical Immunology, vol. 101, no. 1, pp. 94–99, 2001.
[63]  P. J. Keating, F. V. Cromme, M. Duggan-Keen et al., “Frequency of down-regulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP-1 expression,” British Journal of Cancer, vol. 72, no. 2, pp. 405–411, 1995.
[64]  M. S. Campo, S. V. Graham, M. S. Cortese et al., “HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells,” Virology, vol. 407, no. 1, pp. 137–142, 2010.
[65]  A. Correll, A. Tüettenberg, C. Becker, and H. Jonuleit, “Increased regulatory T-cell frequencies in patients with advanced melanoma correlate with a generally impaired T-cell responsiveness and are restored after dendritic cell-based vaccination,” Experimental Dermatology, vol. 19, no. 8, pp. e213–e221, 2010.
[66]  J. D. French, Z. J. Weber, D. L. Fretwell, S. Said, J. P. Klopper, and B. R. Haugen, “Tumor-associated lymphocytes and increased FoxP3+ regulatory T cell frequency correlate with more aggressive papillary thyroid cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 5, pp. 2325–2333, 2010.
[67]  J. Fu, D. Xu, Z. Liu et al., “Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients,” Gastroenterology, vol. 132, no. 7, pp. 2328–2339, 2007.
[68]  C. Oderup, L. Cederbom, A. Makowska, C. M. Cilio, and F. Ivars, “Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression,” Immunology, vol. 118, no. 2, pp. 240–249, 2006.
[69]  K. Nakamura, A. Kitani, and W. Strober, “Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β,” Journal of Experimental Medicine, vol. 194, no. 5, pp. 629–644, 2001.
[70]  L. W. Collison, C. J. Workman, T. T. Kuo et al., “The inhibitory cytokine IL-35 contributes to regulatory T-cell function,” Nature, vol. 450, no. 7169, pp. 566–569, 2007.
[71]  M. I. Garín, N.-C. Chu, D. Golshayan, E. Cernuda-Morollón, R. Wait, and R. I. Lechler, “Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells,” Blood, vol. 109, no. 5, pp. 2058–2065, 2007.
[72]  S. S. Lee, W. Gao, S. Mazzola et al., “Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells,” FASEB Journal, vol. 21, no. 13, pp. 3450–3457, 2007.
[73]  S. Mocellin, F. M. Marincola, and H. A. Young, “Interleukin-10 and the immune response against cancer: a counterpoint,” Journal of Leukocyte Biology, vol. 78, no. 5, pp. 1043–1051, 2005.
[74]  R. P. Viscidi, M. Schiffman, A. Hildesheim et al., “Seroreactivity to human papillomavirus (HPV) types 16, 18, or 31 and risk of subsequent HPV infection: results from a population-based study in Costa Rica,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 2, pp. 324–327, 2004.
[75]  J. J. Carter, L. A. Koutsky, J. P. Hughes et al., “Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection,” Journal of Infectious Diseases, vol. 181, no. 6, pp. 1911–1919, 2000.
[76]  R. C. Rose, R. C. Reichman, and W. Bonnez, “Human papillomavirus (HPV) type 11 recombinant virus-like particles induce the formation of neutralizing antibodies and detect HPV-specific antibodies in human sera,” Journal of General Virology, vol. 75, no. 8, pp. 2075–2079, 1994.
[77]  R. B. S. Roden, M. Ling, and T.-C. Wu, “Vaccination to prevent and treat cervical cancer,” Human Pathology, vol. 35, no. 8, pp. 971–982, 2004.
[78]  WHO, Papillomavirus and Related Cancers in Europe, WHO/ICO Information Centre on HPV and Cervical Cancer (HPV Information Centre), 2010.
[79]  L. G. Bermúdez-Humarán, N. G. Cortes-Perez, F. Lefèvre et al., “A novel mucosal vaccine based on live lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors,” Journal of Immunology, vol. 175, no. 11, pp. 7297–7302, 2005.
[80]  L. Zhou, T. Zhu, X. Ye et al., “Long-term protection against human papillomavirus E7-positive tumor by a single vaccination of adeno-associated virus vectors encoding a fusion protein of inactivated E7 of human papillomavirus 16/18 and heat shock protein 70,” Human Gene Therapy, vol. 21, no. 1, pp. 109–119, 2010.
[81]  H. Echchannaoui, M. Bianchi, D. Baud, M. Bobst, J.-C. Stehle, and D. Nardelli-Haefliger, “Intravaginal immunization of mice with recombinant Salmonella enterica serovar typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer,” Infection and Immunity, vol. 76, no. 5, pp. 1940–1951, 2008.
[82]  C.-W. Lin, J.-Y. Lee, Y.-P. Tsao, C.-P. Shen, H.-C. Lai, and S.-L. Chen, “Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress,” International Journal of Cancer, vol. 102, no. 6, pp. 629–637, 2002.
[83]  D. A. Sewell, D. Douven, Z.-K. Pan, A. Rodriguez, and Y. Paterson, “Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine,” Archives of Otolaryngology, vol. 130, no. 1, pp. 92–97, 2004.
[84]  D. A. Sewell, Z. K. Pan, and Y. Paterson, “Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors,” Vaccine, vol. 26, no. 41, pp. 5315–5320, 2008.
[85]  K. Zurkova, K. Babiarova, P. Hainz et al., “The expression of the soluble isoform of hFlt3 ligand by recombinant vaccinia virus enhances immunogenicity of the vector,” Oncology Reports, vol. 21, no. 5, pp. 1335–1343, 2009.
[86]  D. W. Lee, M. E. Anderson, S. Wu, and J. H. Lee, “Development of an adenoviral vaccine against E6 and E7 oncoproteins to prevent growth of human papillomavirus-positive cancer,” Archives of Otolaryngology, vol. 134, no. 12, pp. 1316–1323, 2008.
[87]  Z. Cui and L. Huang, “Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: therapeutic effect against cervical cancer,” Cancer Immunology, Immunotherapy, vol. 54, no. 12, pp. 1180–1190, 2005.
[88]  M. H. Einstein, A. S. Kadish, R. D. Burk et al., “Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III,” Gynecologic Oncology, vol. 106, no. 3, pp. 453–460, 2007.
[89]  T. J. Stewart, D. Drane, J. Malliaros et al., “ISCOMATRIX? adjuvant: an adjuvant suitable for use in anticancer vaccines,” Vaccine, vol. 22, no. 27-28, pp. 3738–3743, 2004.
[90]  I. H. Frazer, M. Quinn, J. L. Nicklin et al., “Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX? adjuvant in women with cervical intraepithelial neoplasia,” Vaccine, vol. 23, no. 2, pp. 172–181, 2004.
[91]  B. Liu, D. Ye, X. Song et al., “A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis,” Vaccine, vol. 26, no. 10, pp. 1387–1396, 2008.
[92]  S. Hibbitts, “TA-CIN, a vaccine incorporating a recombinant HPV fusion protein (HPV16 L2E6E7) for the potential treatment of HPV16-associated genital diseases,” Current Opinion in Molecular Therapeutics, vol. 12, no. 5, pp. 598–606, 2010.
[93]  S. R. Best, S. Peng, C.-M. Juang et al., “Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery,” Vaccine, vol. 27, no. 40, pp. 5450–5459, 2009.
[94]  B. Klencke, M. Matijevic, R. G. Urban et al., “Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101,” Clinical Cancer Research, vol. 8, no. 5, pp. 1028–1037, 2002.
[95]  K. Lin, K. Doolan, C. F. Hung, and T. C. Wu, “Perspectives for preventive and therapeutic HPV vaccines,” Journal of the Formosan Medical Association, vol. 109, no. 1, pp. 4–24, 2010.
[96]  T. W. Kim, C.-F. Hung, D. Boyd et al., “Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies,” Journal of Immunology, vol. 171, no. 6, pp. 2970–2976, 2003.
[97]  A. Ferrara, M. Nonn, P. Sehr et al., “Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients,” Journal of Cancer Research and Clinical Oncology, vol. 129, no. 9, pp. 521–530, 2003.
[98]  A. D. Santin, S. Bellone, J. J. Roman, A. Burnett, M. J. Cannon, and S. Pecorelli, “Therapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy,” Current Pharmaceutical Design, vol. 11, no. 27, pp. 3485–3500, 2005.
[99]  A. N. Fiander, A. J. Tristram, E. J. Davidson et al., “Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial,” International Journal of Gynecological Cancer, vol. 16, no. 3, pp. 1075–1081, 2006.
[100]  C.-M. Chuang, A. Monie, A. Wu, and C.-F. Hung, “Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects,” Journal of Biomedical Science, vol. 16, no. 1, article 49, 2009.
[101]  C.-W. Tseng, C. Trimble, Q. Zeng et al., “Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts,” Cancer Immunology, Immunotherapy, vol. 58, no. 5, pp. 737–748, 2009.
[102]  C.-M. Chuang, T. Hoory, A. Monie, A. Wu, M.-C. Wang, and C.-F. Hung, “Enhancing therapeutic HPV DNA vaccine potency through depletion of CD4+CD25+ T regulatory cells,” Vaccine, vol. 27, no. 5, pp. 684–689, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133