全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Avidity of Antibodies against HSV-2 and Risk to Neonatal Transmission among Mexican Pregnant Women

DOI: 10.1155/2013/140142

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To determine HSV-2 seroprevalence, risk factors, and antibody avidity among a sample of Mexican pregnant women. Material and Methods. The avidity test was standardized with different urea concentrations and incubation times; the cut-off point was calculated to determine the low avidity (early infection). IgG antibodies against HSV-2 were detected from pregnant and postpartum women from Morelos, Mexico, and the avidity test was performed to positive samples. Multivariate regression logistic analysis was employed to evaluate demographic and sexual behavior characteristics associated with HSV-2 infection. Results. HSV-2 seroprevalence among Mexican women analyzed was 14.5% (333/2300), demographic factors (location of General Hospital, age, education level, and civil status), and risky sexual behaviors (STI self-report and number of sexual partners during last year) were associated with HSV-2 infection. Seventeen women were detected with low avidity antibodies (early infection) with a cut-off point of 66.1%. Conclusions. HSV-2 infection was common among this group of women from Mexico; the avidity test detected women with recent infections, and these women were more likely to transmit HSV-2 to their neonates. Neonatal herpes has no epidemiological surveillance, the disease could be overlooked, and so more studies are needed to estimate the magnitude of neonatal infection. 1. Introduction Herpes Simplex Virus (HSV) belongs to Herpesviridae family and has four basic structures: core with DNA double strand, icosahedral capsid, tegument, and lipidic envelope, and also HSV presents two basic properties, latency and neurovirulence. HSV-1 can cause oral lesions, and HSV-2 is the principal agent of genital herpes and could cause recurrent ulcers but is asymptomatic in 80% of cases [1, 2]. Genital herpes is a frequent infection during pregnancy, one-fifth of women have antibodies against HSV-2 [3], one-tenth of pregnant women infected with HSV-2 have genital viral shedding [4], and finally, 5% of women with genital viral shedding could transmit the infection to their neonates [5]. USA reported a neonatal herpes incidence of 31.25 for 100,000 newborns in Washington [5] and 13.3/100,000 in New York [6]. Vertical transmission leading to neonatal herpes virus infection may occur at vaginal delivery, which can cause congenital anomalies. Forty-five percent of neonatal herpes cause the localized form in mouth, eyes, or skin; 30% of cases arise nervous system infections, with lethargy, convulsions, and loss of appetite, with or without skin lesions; the

References

[1]  R. J. Whitley and B. Roizman, “Herpes simplex virus infections,” The Lancet, vol. 357, no. 9267, pp. 1513–1518, 2001.
[2]  A. Wald, J. Zeh, S. Selke et al., “Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons,” The New England Journal of Medicine, vol. 342, no. 12, pp. 844–850, 2000.
[3]  Z. A. Brown, C. Gardella, A. Wald, R. A. Morrow, and L. Corey, “Genital herpes complicating pregnancy,” Obstetrics and Gynecology, vol. 106, no. 4, pp. 845–856, 2005.
[4]  W. W. Andrews, D. F. Kimberlin, R. Whitley, S. Cliver, P. S. Ramsey, and R. Deeter, “Valacyclovir therapy to reduce recurrent genital herpes in pregnant women,” The American Journal of Obstetrics and Gynecology, vol. 194, no. 3, pp. 774–781, 2006.
[5]  Z. A. Brown, A. Wald, R. A. Morrow, S. Selke, J. Zeh, and L. Corey, “Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant,” The Journal of the American Medical Association, vol. 289, no. 2, pp. 203–209, 2003.
[6]  C. M. Rudnick and G. S. Hoekzema, “Neonatal herpes simplex virus infections,” The American Family Physician, vol. 65, no. 6, pp. 1138–1142, 2002.
[7]  A. Sauerbrei and P. Wutzler, “Herpes simplex and varicella-zoster virus infections during pregnancy: current concepts of prevention, diagnosis and therapy—part 1: herpes simplex virus infections,” Medical Microbiology and Immunology, vol. 196, no. 2, pp. 89–94, 2007.
[8]  D. W. Kimberlin, C. Y. Lin, R. F. Jacobs et al., “Natural history of neonatal herpes simplex virus infections in the acyclovir era,” Pediatrics, vol. 108, no. 2, pp. 223–229, 2001.
[9]  L. Corey and A. Wald, “Maternal and neonatal herpes simplex virus infections,” The New England Journal of Medicine, vol. 361, no. 14, pp. 1328–1385, 2009.
[10]  E. Anzivino, D. Fioriti, M. Mischitelli et al., “Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention,” Virology Journal, vol. 6, article 40, 2009.
[11]  R. L. Ashley, “Type specific antibodies to HSV-1 and -2: review of methodology,” Herpes, vol. 5, no. 2, pp. 33–38, 1998.
[12]  M. G. Revello and G. Gerna, “Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant,” Clinical Microbiology Reviews, vol. 15, no. 4, pp. 680–715, 2002.
[13]  I. Yá?ez-Alvarez, M. F. Martínez-Salazar, C. J. Conde-González, A. B. García-Serrato, and M. A. Sánchez-Alemán, “Seroprevalencia y seroincidencia del virus del herpes simple tipo 2 en personas que viven con VIH,” Enfermedades Infecciosas y Microbiología, vol. 31, pp. 93–97, 2011.
[14]  H. E. Solberg, “The IFCC recommendation on estimation of reference intervals. The RefVal program,” Clinical Chemistry and Laboratory Medicine, vol. 42, no. 7, pp. 710–714, 2004.
[15]  I. Yá?ez-Alvarez, C. J. Conde-González, F. J. Uribe-Salas, M. L. Olamendi-Portugal, S. García-Cisneros, and M. A. Sánchez-Alemán, “Maternal/child seroprevalence of antibodies against Treponema pallidum at four general hospitals in the state of Morelos, Mexico,” Archives of Medical Research, vol. 43, no. 7, pp. 571–577, 2012.
[16]  R. A. Morrow, D. Friedrich, E. Krantz, and A. Wald, “Development and use of a type-specific antibody avidity test based on herpes simplex virus type 2 glycoprotein G,” Sexually Transmitted Diseases, vol. 31, no. 8, pp. 508–515, 2004.
[17]  F. Uribe-Salas, O. Palma-Coca, M. A. Sánchez-Alemán, M. Olamendi, L. Juárez-Figueroa, and C. J. Conde-Glez, “Population-based prevalence of antibodies against herpes simplex virus type 2 and socio-demographic characteristics in Mexico,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 103, no. 2, pp. 151–158, 2009.
[18]  P. Kucera, S. Gerber, P. Marques-Vidal, and P. R. A. Meylan, “Seroepidemiology of herpes simplex virus type 1 and 2 in pregnant women in Switzerland: an obstetric clinic based study,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 160, no. 1, pp. 13–17, 2012.
[19]  B. Suligoi, M. Cusan, P. Santopadre et al., “HSV-2 specific seroprevalence among various populations in Rome, Italy,” Sexually Transmitted Infections, vol. 76, no. 3, pp. 213–214, 2000.
[20]  D. Biswas, B. Borkakoty, J. Mahanta et al., “Seroprevalence and risk factors of herpes simplex virus type-2 infection among pregnant women in Northeast India,” BMC Infectious Diseases, vol. 11, article 325, 2011.
[21]  F. Mundo, “Consejo estatal de población,” 2012, http://www.coespomor.gob.mx/investigacion_poblacion/marginacion/1_marginacion.pdf.
[22]  F. Uribe-Salas, M. Hernández-Avila, L. Juárez-Figueroa, C. J. Conde-Glez, and P. Uribe-Zú?iga, “Risk factors for herpes simplex virus type 2 infection among female commercial sex workers in Mexico City,” International Journal of STD and AIDS, vol. 10, no. 2, pp. 105–111, 1999.
[23]  D. Kirby, “The impact of schools and school programs upon adolescent sexual behavior,” Journal of Sex Research, vol. 39, no. 1, pp. 27–33, 2002.
[24]  “Anuarios de morbilidad,” Dirección general de Epidemiología, 2012, http://www.dgepi.salud.gob.mx/anuario/html/anuarios.html.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133