全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neuroinflammation and Copper in Alzheimer’s Disease

DOI: 10.1155/2013/145345

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inflammation is the innate immune response to infection or tissue damage. Initiation of proinflammatory cascades in the central nervous system (CNS) occurs through recognition of danger associated molecular patterns by cognate immune receptors expressed on inflammatory cells and leads to rapid responses to remove the danger stimulus. The presence of activated microglia and astrocytes in the vicinity of amyloid plaques in the brains of Alzheimer’s disease (AD) patients and mouse models implicates inflammation as a contributor to AD pathogenesis. Activated microglia play a critical role in amyloid clearance, but chronic deregulation of CNS inflammatory pathways results in secretion of neurotoxic mediators that ultimately contribute to neurodegeneration in AD. Copper (Cu) homeostasis is profoundly affected in AD, and accumulated extracellular Cu drives Aβ aggregation, while intracellular Cu deficiency limits bioavailable Cu required for CNS functions. This review presents an overview of inflammatory events that occur in AD in response to Aβ and highlights recent advances on the role of Cu in modulation of beneficial and detrimental inflammatory responses in AD. 1. Inflammation Inflammation is a protective response rapidly triggered by innate immune cells in the event of tissue injury, as well as endogenous or exogenous insults (reviewed in [1]). The process is highly complicated, involving the complex interplay of cells and mediators. In brief, acute inflammatory responses involve vasodilation to increase blood flow combined with alterations in microvascular structure to allow exit of circulating leukocytes and plasma proteins, followed by accumulation and activation of leukocytes at the site of injury, where leukocyte extravasation is largely facilitated by cytokines including tumour necrosis factor (TNF) and interleukin-1 (IL-1) [1]. In addition, activated innate immune cells at site of injury remove cellular debris and/or pathogens via phagocytosis with concomitant cytokine production to facilitate the initiation of adaptive responses [1]. Due to the variability in the nature, severity, and site of injuries, resolution of inflammatory processes, where all injury and insults become resolved with little tissue damage, is not always possible. For severe tissue damage where regeneration is insufficient, healing with fibrosis may occur instead. The third possible outcome is progression from acute to chronic inflammation. This occurs when danger signals persist and inflammation cannot be resolved. Notably, a wide range of diseases, including asthma [2],

References

[1]  K. Newton and V. M. Dixit, “Signaling in innate immunity and inflammation,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 3, Article ID a006049, 2012.
[2]  J. R. Murdoch and C. M. Lloyd, “Chronic inflammation and asthma,” Mutation Research, vol. 690, no. 1-2, pp. 24–39, 2010.
[3]  H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003.
[4]  J. Danesh, P. Whincup, M. Walker et al., “Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses,” British Medical Journal, vol. 321, no. 7255, pp. 199–204, 2000.
[5]  M. Fillon, “Details linking chronic inflammation and cancer continue to emerge,” Journal of the National Cancer Institute, vol. 105, no. 8, pp. 509–510, 2013.
[6]  L. Minghetti, “Role of inflammation in neurodegenerative diseases,” Current Opinion in Neurology, vol. 18, no. 3, pp. 315–321, 2005.
[7]  T. Wyss-Coray and L. Mucke, “Inflammation in neurodegenerative disease-a double-edged sword,” Neuron, vol. 35, no. 3, pp. 419–432, 2002.
[8]  J. K. Krishnaswamy, T. Chu, and S. C. Eisenbarth, “Beyond pattern recognition: NOD-like receptors in dendritic cells,” Trends in Immunology, vol. 34, no. 5, pp. 224–233, 2013.
[9]  K. Takeda and S. Akira, “TLR signaling pathways,” Seminars in Immunology, vol. 16, no. 1, pp. 3–9, 2004.
[10]  L. A. O'Neill and A. G. Bowie, “The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling,” Nature Reviews Immunology, vol. 7, no. 5, pp. 353–364, 2007.
[11]  R. Medzhitov, “Toll-like receptors and innate immunity,” Nature Reviews Immunology, vol. 1, no. 2, pp. 135–145, 2001.
[12]  T. H. Mogensen, “Pathogen recognition and inflammatory signaling in innate immune defenses,” Clinical Microbiology Reviews, vol. 22, no. 2, pp. 240–273, 2009.
[13]  C. Becker and L. A. J. O'Neill, “Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs,” Seminars in Immunopathology, vol. 29, no. 3, pp. 239–248, 2007.
[14]  P. P. Tak and G. S. Firestein, “NF-κB: a key role in inflammatory diseases,” Journal of Clinical Investigation, vol. 107, no. 1, pp. 7–11, 2001.
[15]  R. J. Kelly, A. M. Minogue, A. Lyons, et al., “Glial activation in AbetaPP/PS1 mice is associated with infiltration of IFNgamma-producing cells,” Journal of Alzheimer's Disease, vol. 37, no. 1, pp. 63–75, 2013.
[16]  O. Takeuchi and S. Akira, “Pattern recognition receptors and inflammation,” Cell, vol. 140, no. 6, pp. 805–820, 2010.
[17]  M. Proell, S. J. Riedl, J. H. Fritz, A. M. Rojas, and R. Schwarzenbacher, “The Nod-Like Receptor (NLR) family: a tale of similarities and differences,” PLoS ONE, vol. 3, no. 4, Article ID e2119, 2008.
[18]  P. J. Shaw, M. Lamkanfi, and T. Kanneganti, “NOD-like receptor (NLR) signaling beyond the inflammasome,” European Journal of Immunology, vol. 40, no. 3, pp. 624–627, 2010.
[19]  T. A. Kufer, “Signal transduction pathways used by NLR-type innate immune receptors,” Molecular BioSystems, vol. 4, no. 5, pp. 380–386, 2008.
[20]  P. Duewell, H. Kono, K. J. Rayner et al., “NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals,” Nature, vol. 464, no. 7293, pp. 1357–1361, 2010.
[21]  S. C. Eisenbarth, O. R. Colegio, W. O'Connor Jr., F. S. Sutterwala, and R. A. Flavell, “Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants,” Nature, vol. 453, no. 7198, pp. 1122–1126, 2008.
[22]  F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp, “Gout-associated uric acid crystals activate the NALP3 inflammasome,” Nature, vol. 440, no. 7081, pp. 237–241, 2006.
[23]  S. L. Masters and L. A. J. O'Neill, “Disease-associated amyloid and misfolded protein aggregates activate the inflammasome,” Trends in Molecular Medicine, vol. 17, no. 5, pp. 276–282, 2011.
[24]  W. S. Griffin, J. G. Sheng, M. C. Royston et al., “Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression,” Brain Pathology, vol. 8, no. 1, pp. 65–72, 1998.
[25]  H. Ogura, M. Murakami, Y. Okuyama et al., “Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction,” Immunity, vol. 29, no. 4, pp. 628–636, 2008.
[26]  T. Hanada and A. Yoshimura, “Regulation of cytokine signaling and inflammation,” Cytokine and Growth Factor Reviews, vol. 13, no. 4-5, pp. 413–421, 2002.
[27]  Z. Zheng, C. White, J. Lee et al., “Altered microglial copper homeostasis in a mouse model of Alzheimer's disease,” Journal of Neurochemistry, vol. 114, no. 6, pp. 1630–1638, 2010.
[28]  K. H. Lee, S. Yun, K. N. Nam, Y. S. Gho, and E. H. Lee, “Activation of microglial cells by ceruloplasmin,” Brain Research, vol. 1171, no. 1, pp. 1–8, 2007.
[29]  A. Becaria, D. K. Lahiri, S. C. Bondy et al., “Aluminum and copper in drinking water enhance inflammatory or oxidative events specifically in the brain,” Journal of Neuroimmunology, vol. 176, no. 1-2, pp. 16–23, 2006.
[30]  J. Lu, D. Wu, Y. Zheng et al., “Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway,” Brain, Behavior, and Immunity, vol. 23, no. 2, pp. 193–203, 2009.
[31]  A. Rossi-George, C.-J. Guo, B. L. Oakes, and A. J. Gow, “Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide,” Nitric Oxide, vol. 27, no. 4, pp. 201–209, 2012.
[32]  C. J. Maynard, R. Cappai, I. Volitakis et al., “Overexpression of Alzheimer's disease amyloid-β opposes the age-dependent elevations of brain copper and iron,” Journal of Biological Chemistry, vol. 277, no. 47, pp. 44670–44676, 2002.
[33]  S. A. Bellingham, D. K. Lahiri, B. Maloney, S. La Fontaine, G. Multhaup, and J. Camakaris, “Copper depletion down-regulates expression of the Alzheimer's disease amyloid-β precursor protein gene,” Journal of Biological Chemistry, vol. 279, no. 19, pp. 20378–20386, 2004.
[34]  S. L. Bailey, P. A. Carpentier, E. J. McMahon, W. S. Begolka, and S. D. Miller, “Innate and adaptive immune responses of the central nervous system,” Critical Reviews Immunology, vol. 26, no. 2, pp. 149–188, 2006.
[35]  J. J. Bajramovic, “Regulation of innate immune responses in the central nervous system,” CNS & Neurological Disorders Drug Targets, vol. 10, no. 1, pp. 4–24, 2011.
[36]  R. O. Weller, E. Djuanda, H. Yow, and R. O. Carare, “Lymphatic drainage of the brain and the pathophysiology of neurological disease,” Acta Neuropathologica, vol. 117, no. 1, pp. 1–14, 2009.
[37]  B.-G. Xiao and H. Link, “Immune regulation within the central nervous system,” Journal of the Neurological Sciences, vol. 157, no. 1, pp. 1–12, 1998.
[38]  P. Kivis?kk, D. J. Mahad, M. K. Callahan et al., “Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8389–8394, 2003.
[39]  S. Kida, R. O. Weller, E.-T. Zhang, M. J. Phillips, and F. Iannotti, “Anatomical pathways for lymphatic drainage of the brain and their pathological significance,” Neuropathology and Applied Neurobiology, vol. 21, no. 3, pp. 181–184, 1995.
[40]  C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, “Mechanisms underlying inflammation in neurodegeneration,” Cell, vol. 140, no. 6, pp. 918–934, 2010.
[41]  W. J. Streit, R. E. Mrak, and W. S. T. Griffin, “Microglia and neuroinflammation: a pathological perspective,” Journal of Neuroinflammation, vol. 1, no. 1, p. 14, 2004.
[42]  M. E. Alexianu, M. Kozovska, and S. H. Appel, “Immune reactivity in a mouse model of familial ALS correlates with disease progression,” Neurology, vol. 57, no. 7, pp. 1282–1289, 2001.
[43]  T. Autti, R. Raininko, P. Santavuori, S. L. Vanhanen, V. P. Poutanen, and M. Haltia, “MRI of neuronal ceroid lipofuscinosis. II. Postmortem MRI and histopathological study of the brain in 16 cases of neuronal ceroid lipofuscinosis of juvenile or late infantile type,” Neuroradiology, vol. 39, no. 5, pp. 371–377, 1997.
[44]  M. E. Bamberger, M. E. Harris, D. R. McDonald, J. Husemann, and G. E. Landreth, “A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation,” Journal of Neuroscience, vol. 23, no. 7, pp. 2665–2674, 2003.
[45]  P. Damier, E. C. Hirsch, P. Zhang, Y. Agid, and F. Javoy-Agid, “Glutathione peroxidase, glial cells and Parkinson's disease,” Neuroscience, vol. 52, no. 1, pp. 1–6, 1993.
[46]  M. Ingelsson, H. Fukumoto, K. L. Newell et al., “Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain,” Neurology, vol. 62, no. 6, pp. 925–931, 2004.
[47]  H. Kamo, H. Haebara, and I. Akiguchi, “A distinctive distribution of reactive astroglia in the precentral cortex in amyotrophic lateral sclerosis,” Acta Neuropathologica, vol. 74, no. 1, pp. 33–38, 1987.
[48]  S. Thellung, T. Florio, A. Corsaro et al., “Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106-126,” International Journal of Developmental Neuroscience, vol. 18, no. 4-5, pp. 481–492, 2000.
[49]  D. W. Dickson, J. Farlo, P. Davies, H. Crystal, P. Fuld, and S.-H. C. Yen, “Alzheimer's disease. A double-labeling immunohistochemical study of senile plaques,” American Journal of Pathology, vol. 132, no. 1, pp. 86–101, 1988.
[50]  P. L. McGeer, H. Akiyama, S. Itagaki, and E. G. McGeer, “Immune system response in Alzheimer's disease,” Canadian Journal of Neurological Sciences, vol. 16, supplement 4, pp. 516–527, 1989.
[51]  J. M. Rozemuller, P. Eikelenboom, S. T. Pals, and F. C. Stam, “Microglial cells around amyloid plaques in Alzheimer's disease express leucocyte adhesion molecules of the LFA-1 family,” Neuroscience Letters, vol. 101, no. 3, pp. 288–292, 1989.
[52]  K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010.
[53]  M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005.
[54]  K. T. Akama, C. Albanese, R. G. Pestell, and L. J. Van Eldik, “Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκb-dependent mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5795–5800, 1998.
[55]  K. C. Flanders, C. F. Lippa, T. W. Smith, D. A. Pollen, and M. B. Sporn, “Altered expression of transforming growth factor-β in Alzheimer's disease,” Neurology, vol. 45, no. 8, pp. 1561–1569, 1995.
[56]  P. Grammas and R. Ovase, “Inflammatory factors are elevated in brain microvessels in Alzheimer's disease,” Neurobiology of Aging, vol. 22, no. 6, pp. 837–842, 2001.
[57]  L. F. Lue, R. Rydel, E. F. Brigham et al., “Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia in vitro,” Glia, vol. 35, no. 1, pp. 72–79, 2001.
[58]  H. Akiyama, W. Streit, R. Strohmeyer, et al., “Inflammation and Alzheimer's disease,” Neurobiology of Aging, vol. 21, no. 3, pp. 383–421, 2000.
[59]  A. Salminen, J. Ojala, A. Kauppinen, K. Kaarniranta, and T. Suuronen, “Inflammation in Alzheimer's disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors,” Progress in Neurobiology, vol. 87, no. 3, pp. 181–194, 2009.
[60]  E. Mocchegiani, L. Costarelli, R. Giacconi, F. Piacenza, A. Basso, and M. Malavolta, “Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments,” Ageing Research Reviews, vol. 11, no. 2, pp. 297–319, 2012.
[61]  A. Madaric, E. Ginter, and J. Kadrabova, “Serum copper, zinc and copper/zinc ratio in males: influence of aging,” Physiological Research, vol. 43, no. 2, pp. 107–111, 1994.
[62]  L. J. Lawson, V. H. Perry, P. Dri, and S. Gordon, “Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain,” Neuroscience, vol. 39, no. 1, pp. 151–170, 1990.
[63]  M. Mittelbronn, K. Dietz, H. J. Schluesener, and R. Meyermann, “Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude,” Acta Neuropathologica, vol. 101, no. 3, pp. 249–255, 2001.
[64]  M. Olah, S. Amor, N. Brouwer et al., “Identification of a microglia phenotype supportive of remyelination,” Glia, vol. 60, no. 2, pp. 306–321, 2012.
[65]  D. A. DeWitt, G. Perry, M. Cohen, C. Doller, and J. Silver, “Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer's disease,” Experimental Neurology, vol. 149, no. 2, pp. 329–340, 1998.
[66]  L. M. Shaffer, M. D. Dority, R. Gupta-Bansal, R. C. A. Frederickson, S. G. Younkin, and K. R. Brunden, “Amyloid β precursor protein (Aβ) removal by neuroglial cells in culture,” Neurobiology of Aging, vol. 16, no. 5, pp. 737–745, 1995.
[67]  L. Meda, P. Baron, E. Prat et al., “Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with β-amyloid[25–35],” Journal of Neuroimmunology, vol. 93, no. 1-2, pp. 45–52, 1999.
[68]  E. J. Remarque, E. L. E. M. Bollen, A. W. E. Weverling-Rijnsburger, J. C. Laterveer, G. J. Blauw, and R. G. J. Westendorp, “Patients with Alzheimer's disease display a pro-inflammatory phenotype,” Experimental Gerontology, vol. 36, no. 1, pp. 171–176, 2001.
[69]  C. A. Colton and D. L. Gilbert, “Production of superoxide anions by a CNS macrophage, the microglia,” FEBS Letters, vol. 223, no. 2, pp. 284–288, 1987.
[70]  C. A. Colton, “Heterogeneity of microglial activation in the innate immune response in the brain,” Journal of Neuroimmune Pharmacology, vol. 4, no. 4, pp. 399–418, 2009.
[71]  S. Jimenez, D. Baglietto-Vargas, C. Caballero et al., “Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic,” Journal of Neuroscience, vol. 28, no. 45, pp. 11650–11661, 2008.
[72]  H. Kimelberg, “Primary astrocyte cultures—a key to astrocyte function,” Cellular and Molecular Neurobiology, vol. 3, no. 1, pp. 1–16, 1983.
[73]  C. Farina, F. Aloisi, and E. Meinl, “Astrocytes are active players in cerebral innate immunity,” Trends in Immunology, vol. 28, no. 3, pp. 138–145, 2007.
[74]  R. E. Mrak, J. G. Sheng, and W. S. T. Griffin, “Correlation of astrocytic S100β expression with dystrophie neurites in amyloid plaques of Alzheimer's disease,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 3, pp. 273–279, 1996.
[75]  C. J. Pike, B. J. Cummings, R. Monzavi, and C. W. Cotman, “β-Amyloid-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzeimer's disease,” Neuroscience, vol. 63, no. 2, pp. 517–531, 1994.
[76]  T. Wyss-Coray, J. D. Loike, T. C. Brionne et al., “Adult mouse astrocytes degrade amyloid-β in vitro and in situ,” Nature Medicine, vol. 9, no. 4, pp. 453–457, 2003.
[77]  R. Del Bo, N. Angeretti, E. Lucca, M. G. De Simoni, and G. Forloni, “Reciprocal control of inflammatory cytokines, IL-1 and IL-6, β-amyloid production in cultures,” Neuroscience Letters, vol. 188, no. 1, pp. 70–74, 1995.
[78]  M. Johnstone, A. J. H. Gearing, and K. M. Miller, “A central role for astrocytes in the inflammatory response to β- amyloid; chemokines, cytokines and reactive oxygen species are produced,” Journal of Neuroimmunology, vol. 93, no. 1-2, pp. 182–193, 1999.
[79]  G. Forloni, F. Mangiarotti, N. Angeretti, E. Lucca, and M. G. De Simoni, “β-amyloid fragment potentiates IL-6 and TNF-α secretion by LPS in astrocytes but not in microglia,” Cytokine, vol. 9, no. 10, pp. 759–762, 1997.
[80]  J. Hu, K. T. Akama, G. A. Krafft, B. A. Chromy, and L. J. Van Eldik, “Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release,” Brain Research, vol. 785, no. 2, pp. 195–206, 1998.
[81]  C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 101–112, 2007.
[82]  D. M. Walsh and D. J. Selkoe, “Aβ oligomers-a decade of discovery,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1172–1184, 2007.
[83]  M. E. Harris, K. Hensley, D. A. Butterfield, R. A. Leedle, and J. M. Carney, “Direct evidence of oxidative injury produced by the Alzheimer's β-amyloid peptide (1–40) in cultured hippocampal neurons,” Experimental Neurology, vol. 131, no. 2, pp. 193–202, 1995.
[84]  S. Walter, M. Letiembre, Y. Liu et al., “Role of the toll-like receptor 4 in neuroinflammation in Alzheimer's disease,” Cellular Physiology and Biochemistry, vol. 20, no. 6, pp. 947–956, 2007.
[85]  M. Jana, C. A. Palencia, and K. Pahan, “Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer's disease,” Journal of Immunology, vol. 181, no. 10, pp. 7254–7262, 2008.
[86]  M. O. Chaney, W. B. Stine, T. A. Kokjohn et al., “RAGE and amyloid beta interactions: atomic force microscopy and molecular modeling,” Biochimica et Biophysica Acta, vol. 1741, no. 1-2, pp. 199–205, 2005.
[87]  L. F. Lue, D. G. Walker, L. Brachova et al., “Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism,” Experimental Neurology, vol. 171, no. 1, pp. 29–45, 2001.
[88]  A. Salminen, J. Ojala, T. Suuronen, K. Kaarniranta, and A. Kauppinen, “Amyloid-β oligomers set fire to inflammasomes and induce Alzheimer's pathology: Alzheimer Review Series,” Journal of Cellular and Molecular Medicine, vol. 12, no. 6, pp. 2255–2262, 2008.
[89]  C. S. Jack, N. Arbour, J. Manusow et al., “TLR signaling tailors innate immune responses in human microglia and astrocytes,” Journal of Immunology, vol. 175, no. 7, pp. 4320–4330, 2005.
[90]  T. Kielian, “Toll-like receptors in central nervous system glial inflammation and homeostasis,” Journal of Neuroscience Research, vol. 83, no. 5, pp. 711–730, 2006.
[91]  M. Song, J. Jin, J. Lim et al., “TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease,” Journal of Neuroinflammation, vol. 8, no. 92, pp. 1–14, 2011.
[92]  K. L. Richard, M. Filali, P. Préfontaine, and S. Rivest, “Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β1-42 and delay the cognitive decline in a mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 28, no. 22, pp. 5784–5793, 2008.
[93]  K. Tahara, H. Kim, J. Jin, J. A. Maxwell, L. Li, and K. Fukuchi, “Role of toll-like receptor signalling in Aβ uptake and clearance,” Brain, vol. 129, no. 11, pp. 3006–3019, 2006.
[94]  C. R. Stewart, L. M. Stuart, K. Wilkinson et al., “CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer,” Nature Immunology, vol. 11, no. 2, pp. 155–161, 2010.
[95]  W. Zhang, L. Wang, J. Yu, Z. Chi, and L. Tan, “Increased expressions of TLR2 and TLR4 on peripheral blood mononuclear cells from patients with Alzheimer's disease,” Journal of the Neurological Sciences, vol. 315, no. 1-2, pp. 67–71, 2012.
[96]  A. Bierhaus, D. M. Stern, and P. P. Nawroth, “RAGE in inflammation: a new therapeutic target?” Current Opinion in Investigational Drugs, vol. 7, no. 11, pp. 985–991, 2006.
[97]  R. Deane, Z. Wu, and B. V. Zlokovic, “RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier,” Stroke, vol. 35, no. 11, supplement 1, pp. 2628–2631, 2004.
[98]  J. E. Donahue, S. L. Flaherty, C. E. Johanson et al., “RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease,” Acta Neuropathologica, vol. 112, no. 4, pp. 405–415, 2006.
[99]  O. Arancio, H. P. Zhang, X. Chen et al., “RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice,” EMBO Journal, vol. 23, no. 20, pp. 4096–4105, 2004.
[100]  G. Zuliani, M. Ranzini, G. Guerra et al., “Plasma cytokines profile in older subjects with late onset Alzheimer's disease or vascular dementia,” Journal of Psychiatric Research, vol. 41, no. 8, pp. 686–693, 2007.
[101]  J. Ojala, I. Alafuzoff, S. Herukka, T. van Groen, H. Tanila, and T. Pirttil?, “Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients,” Neurobiology of Aging, vol. 30, no. 2, pp. 198–209, 2009.
[102]  J. Apelt and R. Schliebs, “β-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology,” Brain Research, vol. 894, no. 1, pp. 21–30, 2001.
[103]  V. Pétrilli, C. Dostert, D. A. Muruve, and J. Tschopp, “The inflammasome: a danger sensing complex triggering innate immunity,” Current Opinion in Immunology, vol. 19, no. 6, pp. 615–622, 2007.
[104]  K. Furukawa, S. W. Barger, E. M. Blalock, and M. P. Mattson, “Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid-precursor protein,” Nature, vol. 379, no. 6560, pp. 74–78, 1996.
[105]  S. P. Yu, Z. S. Farhangrazi, H. S. Ying, C. Yeh, and D. W. Choi, “Enhancement of outward potassium current may participate in β-amyloid peptide-induced cortical neuronal death,” Neurobiology of Disease, vol. 5, no. 2, pp. 81–88, 1998.
[106]  A. Halle, V. Hornung, G. C. Petzold et al., “The NALP3 inflammasome is involved in the innate immune response to amyloid-β,” Nature Immunology, vol. 9, no. 8, pp. 857–865, 2008.
[107]  A. I. Bush, “Metals and neuroscience,” Current Opinion in Chemical Biology, vol. 4, no. 2, pp. 184–191, 2000.
[108]  M. C. Linder and M. Hazegh-Azam, “Copper biochemistry and molecular biology,” American Journal of Clinical Nutrition, vol. 63, supplement 5, pp. 797S–811S, 1996.
[109]  T. A. Bayer, S. Sch?fer, A. Simons et al., “Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14187–14192, 2003.
[110]  M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, “Copper, iron and zinc in Alzheimer's disease senile plaques,” Journal of the Neurological Sciences, vol. 158, no. 1, pp. 47–52, 1998.
[111]  M. Schrag, A. Crofton, M. Zabel et al., “Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in alzheimer's disease,” Journal of Alzheimer's Disease, vol. 24, no. 1, pp. 137–149, 2011.
[112]  D. Noy, I. Solomonov, O. Sinkevich, T. Arad, K. Kjaer, and I. Sagi, “Zinc-amyloid β interactions on a millisecond time-scale stabilize non-fibrillar Alzheimer-related species,” Journal of the American Chemical Society, vol. 130, no. 4, pp. 1376–1383, 2008.
[113]  M. A. Smith, P. L. R. Harris, L. M. Sayre, and G. Perry, “Iron accumulation in Alzheimer disease is a source of redox-generated free radicals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9866–9868, 1997.
[114]  C. S. Atwood, R. D. Moir, X. Huang et al., “Dramatic aggregation of alzheimer by Cu(II) is induced by conditions representing physiological acidosis,” Journal of Biological Chemistry, vol. 273, no. 21, pp. 12817–12826, 1998.
[115]  C. S. Atwood, R. C. Scarpa, X. Huang et al., “Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1–42,” Journal of Neurochemistry, vol. 75, no. 3, pp. 1219–1233, 2000.
[116]  C. C. Curtain, F. Ali, I. Volitakis et al., “Alzheimer's disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 20466–20473, 2001.
[117]  X. Huang, C. S. Atwood, R. D. Moir, M. A. Hartshorn, R. E. Tanzi, and A. I. Bush, “Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer's Aβ peptides,” Journal of Biological Inorganic Chemistry, vol. 9, no. 8, pp. 954–960, 2004.
[118]  K. J. Barnham, F. Haeffner, G. D. Ciccotosto et al., “Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease β-amyloid,” FASEB Journal, vol. 18, no. 12, pp. 1427–1429, 2004.
[119]  C. White, J. Lee, T. Kambe, K. Fritsche, and M. J. Petris, “A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity,” Journal of Biological Chemistry, vol. 284, no. 49, pp. 33949–33956, 2009.
[120]  G. Multhaup, A. Schlicksupp, L. Hesse et al., “The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I),” Science, vol. 271, no. 5254, pp. 1406–1409, 1996.
[121]  G. Schmalz, U. Schuster, and H. Schweikl, “Influence of metals on IL-6 release in vitro,” Biomaterials, vol. 19, no. 18, pp. 1689–1694, 1998.
[122]  F. Suska, M. Esposito, C. Gretzer, M. K?lltorp, P. Tengvall, and P. Thomsen, “IL-1α, IL-1β and TNF-α secretion during in vivo/ex vivo cellular interactions with titanium and copper,” Biomaterials, vol. 24, no. 3, pp. 461–468, 2003.
[123]  F. Suska, C. Gretzer, M. Esposito et al., “In vivo cytokine secretion and NF-κB activation around titanium and copper implants,” Biomaterials, vol. 26, no. 5, pp. 519–527, 2005.
[124]  T. P. Kennedy, A. J. Ghio, W. Reed et al., “Copper-dependent inflammation and nuclear factor-κb activation by particulate air pollution,” American Journal of Respiratory Cell and Molecular Biology, vol. 19, no. 3, pp. 366–378, 1998.
[125]  T. M. Rice, R. W. Clarke, J. J. Godleski et al., “Differential ability of transition metals to induce pulmonary inflammation,” Toxicology and Applied Pharmacology, vol. 177, no. 1, pp. 46–53, 2001.
[126]  D. Bar-Or, G. W. Thomas, R. L. Yukl et al., “Copper stimulates the synthesis and release of interleukin-8 in human endothelial cells: a possible early role in systemic inflammatory responses,” Shock, vol. 20, no. 2, pp. 154–158, 2003.
[127]  Y. H. Hung, A. I. Bush, and S. La Fontaine, “Links between copper and cholesterol in Alzheimer's disease,” Frontiers in Physiology, vol. 4, no. 111, pp. 1–18, 2013.
[128]  D. Terwel, Y. L?schmann, H. H.-J. Schmidt, H. R. Sch?ler, T. Cantz, and M. T. Heneka, “Neuroinflammatory and behavioural changes in the Atp7B mutant mouse model of Wilson's disease,” Journal of Neurochemistry, vol. 118, no. 1, pp. 105–112, 2011.
[129]  H. P. Liu, W. Y. Lin, W. F. Wang, et al., “Genetic variability in copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with Alzheimer's disease in a Chinese population,” Journal of Biological Regulators and Homeostatic Agents, vol. 27, no. 2, pp. 319–327, 2013.
[130]  R. Squitti and R. Polimanti, “Copper hypothesis in the missing hereditability of sporadic alzheimer's disease: ATP7B gene as potential harbor of rare variants,” Journal of Alzheimer's Disease, vol. 29, no. 3, pp. 493–501, 2012.
[131]  S. B. Solerte, L. Cravello, E. Ferrari, and M. Fioravanti, “Overproduction of IFN-γ and TNF-α from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 917, pp. 331–340, 2000.
[132]  R. Baron, A. Nemirovsky, I. Harpaz, H. Cohen, T. Owens, and A. Monsonego, “IFN-γ enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer's disease,” FASEB Journal, vol. 22, no. 8, pp. 2843–2852, 2008.
[133]  M. A. Mastrangelo, K. L. Sudol, W. C. Narrow, and W. J. Bowers, “Interferon-γ differentially affects Alzheimer's disease pathologies and induces neurogenesis in triple transgenic-AD mice,” American Journal of Pathology, vol. 175, no. 5, pp. 2076–2088, 2009.
[134]  J. R. Connor, P. Tucker, M. Johnson, and B. Snyder, “Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer's disease,” Neuroscience Letters, vol. 159, no. 1-2, pp. 88–90, 1993.
[135]  D. A. Loeffler, P. A. LeWitt, P. L. Juneau et al., “Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders,” Brain Research, vol. 738, no. 2, pp. 265–274, 1996.
[136]  S. Osaki and D. A. Johnson, “Mobilization of liver iron by ferroxidase (ceruloplasmin),” Journal of Biological Chemistry, vol. 244, no. 20, pp. 5757–5758, 1969.
[137]  E. Nemeth, M. S. Tuttle, J. Powelson et al., “Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization,” Science, vol. 306, no. 5704, pp. 2090–2093, 2004.
[138]  A. Venti, T. Giordano, P. Eder et al., “Integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5′-untranslated region,” Annals of the New York Academy of Sciences, vol. 1035, pp. 34–48, 2004.
[139]  O. Myhre, H. Utkilen, N. Duale, G. Brunborg, and T. Hofer, “Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 726954, 19 pages, 2013.
[140]  K. M. Acevedo, Y. H. Hung, A. H. Dalziel, et al., “Copper promotes the trafficking of the amyloid precursor protein,” Journal of Biological Chemistry, vol. 286, no. 10, pp. 8252–8262, 2011.
[141]  G. G. Zucconi, S. Cipriani, R. Scattoni, I. Balgkouranidou, D. P. Hawkins, and K. V. Ragnarsdottir, “Copper deficiency elicits glial and neuronal response typical of neurodegenerative disorders,” Neuropathology and Applied Neurobiology, vol. 33, no. 2, pp. 212–225, 2007.
[142]  W. S. Liang, T. Dunckley, T. G. Beach et al., “Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain,” Physiological Genomics, vol. 28, no. 3, pp. 311–322, 2007.
[143]  W. S. Liang, E. M. Reiman, J. Valla, et al., “Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4441–4446, 2008.
[144]  L. Agullo, A. Garcia, and J. Hidalgo, “Metallothionein-I+II induction by zinc and copper in primary cultures of rat microglia,” Neurochemistry International, vol. 33, no. 3, pp. 237–242, 1998.
[145]  P. J. Crouch, L. W. Hung, P. A. Adlard, et al., “Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation,” Proceedings of the National Academy of Sciences, vol. 106, no. 2, pp. 381–386, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133