Age is one of the main factors involved in the development of neurological illnesses, in particular, Alzheimer, and it is widely held that the rapid aging of the world population is accompanied by a rise in the prevalence and incidence of Alzheimer disease. However, evidence from recent decades indicates that Cu and Cho overload are emerging causative factors in neurodegeneration, a hypothesis that has been partially investigated in experimental models. The link between these two variables and the onset of Alzheimer disease has opened up interesting new possibilities requiring more in-depth analysis. The aim of the present study was therefore to investigate the effect of the association of Cu + Cho (CuCho) as a possible synergistic factor in the development of an Alzheimer-like pathology in Wistar rats. We measured total- and nonceruloplasmin-bound Cu and Cho (free and sterified) contents in plasma and brain zones (cortex and hippocampus), markers of oxidative stress damage, inflammation, and programmed cell death (caspase-3 and calpain isoforms). The ratio beta-amyloid (1-42)/(1-40) was determined in plasma and brain as neurodegenerative biomarker. An evaluation of visuospatial memory (Barnes maze test) was also performed. The results demonstrate the establishment of a prooxidative and proinflammatory environment after CuCho treatment, hallmarked by increased TBARS, protein carbonyls, and nitrite plus nitrate levels in plasma and brain zones (cortex and hippocampus) with a consequent increase in the activity of calpains and no significant changes in caspase-3. A simultaneous increase in the plasma Aβ1-42/Aβ1-40 ratio was found. Furthermore, a slight but noticeable change in visuospatial memory was observed in rats treated with CuCho. We conclude that our model could reflect an initial stage of neurodegeneration in which Cu and Cho interact with one another to exacerbate neurological damage. 1. Introduction The aging of the world population is being accompanied by a rise in the prevalence and incidence of Alzheimer disease (AD) and other neurodegenerative illnesses. In the USA, the number of patients with AD is expected to increase to 13 million by 2050 and in the European Union (EU) to over 4 million [1]. The mortality rate of AD is second only to cancer and stroke. Epidemiologic data indicates that the world population will have grown considerably by 2025 and the percentage of elderly people will be significantly higher [2]. Since age is one of the major risk factors in the development of AD, it is expected that the incidence of this disease will also
References
[1]
L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A. Evans, “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Archives of Neurology, vol. 60, no. 8, pp. 1119–1122, 2003.
[2]
P. M. Bagnati, R. F. Allegri, J. Kremer, and F. E. Taragano, Enfermedad de Alzheimer y Otras Demencias, Ed. Polemos, 2010.
[3]
G. J. Brewer, “Issues raised involving the copper hypotheses in the causation of Alzheimer's disease,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 537528, 11 pages, 2011.
[4]
H. D. Foster, “Why the preeminent risk factor in sporadic Alzheimer's disease cannot be genetic,” Medical Hypotheses, vol. 59, no. 1, pp. 57–61, 2002.
[5]
C. Salustri, G. Barbati, R. Ghidoni et al., “Is cognitive function linked to serum free copper levels? A cohort study in a normal population,” Clinical Neurophysiology, vol. 121, no. 4, pp. 502–507, 2010.
[6]
G. J. Brewer, “Copper toxicity in Alzheimer's disease: cognitive loss from ingestion of inorganic copper,” Journal of Trace Elements in Medicine and Biology, vol. 26, no. 2-3, pp. 89–92, 2012.
[7]
R. Squitti, R. Ghidoni, F. Scrascia et al., “Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals,” Journal of Alzheimer's Disease, vol. 23, no. 2, pp. 239–248, 2011.
[8]
R. Squitti, P. Pasqualetti, G. dal Forno et al., “Excess of serum copper not related to ceruloplasmin in Alzheimer disease,” Neurology, vol. 64, no. 6, pp. 1040–1046, 2005.
[9]
R. Squitti, G. Barbati, L. Rossi et al., “Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF β-amyloid, and h-tau,” Neurology, vol. 67, no. 1, pp. 76–82, 2006.
[10]
R. Squitti, F. Bressi, P. Pasqualetti et al., “Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease,” Neurology, vol. 72, no. 1, pp. 50–55, 2009.
[11]
N. Arnal, D. O. Cristalli, M. J. T. de Alaniz, and C. A. Marra, “Clinical utility of copper, ceruloplasmin, and metallothionein plasma determinations in human neurodegenerative patients and their first-degree relatives,” Brain Research, vol. 1319, pp. 118–130, 2010.
[12]
D. L. Sparks and B. G. Schreurs, “Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11065–11069, 2003.
[13]
J. Lu, Y.-L. Zheng, D.-M. Wu, D.-X. Sun, Q. Shan, and S.-H. Fan, “Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis,” FEBS Letters, vol. 580, no. 28-29, pp. 6730–6740, 2006.
[14]
J. Lu, D.-M. Wu, Y.-L. Zheng et al., “Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway,” Brain, Behavior, and Immunity, vol. 23, no. 2, pp. 193–203, 2009.
[15]
P. S. Donnelly, Z. Xiao, and A. G. Wedd, “Copper and Alzheimer's disease,” Current Opinion in Chemical Biology, vol. 11, pp. 128–133, 2007.
[16]
K. A. Cockell, J. Bertinato, and M. R. L'Abbé, “Regulatory frameworks for copper considering chronic exposures of the population,” American Journal of Clinical Nutrition, vol. 88, no. 3, pp. 863S–866S, 2008.
[17]
N. Arnal, M. J. T. de Alaniz, and C. A. Marra, “Alterations in copper homeostasis and oxidative stress biomarkers in women using the intrauterine device TCu380A,” Toxicology Letters, vol. 192, no. 3, pp. 373–378, 2010.
[18]
N. Arnal, M. Astiz, M. J. T. de Alaniz, and C. A. Marra, “Clinical parameters and biomarkers of oxidative stress in agricultural workers who applied copper-based pesticides,” Ecotoxicology and Environmental Safety, vol. 74, no. 6, pp. 1779–1786, 2011.
[19]
D. de la Cruz, A. Cruz, M. Arteaga, L. Castillo, and H. Tovalin, “Blood copper levels in Mexican users of the T380A IUD,” Contraception, vol. 72, no. 2, pp. 122–125, 2005.
[20]
W. B. Grant, “Dietary links to Alzheimer’s disease,” Alzheimer's Disease Review, vol. 2, pp. 42–55, 1997.
[21]
M. A. Pappolla, M. A. Smith, T. Bryant-Thomas et al., “Cholesterol, oxidative stress, and Alzheimer's disease: expanding the horizons of pathogenesis,” Free Radical Biology & Medicine, vol. 33, no. 2, pp. 173–181, 2002.
[22]
G. Di Paolo and T.-W. Kim, “Linking lipids to Alzheimer's disease: cholesterol and beyond,” Nature Reviews Neuroscience, vol. 12, no. 5, pp. 284–296, 2011.
[23]
M. Stefani and G. Liguri, “Colesterol in Alzheimer’s disease: unresolved questions,” Current Alzheimer Research, vol. 6, pp. 1–17, 2009.
[24]
B. Schreurs, “The effects of cholesterol on learning and memory,” Neuroscience & Biobehavioral Reviews, vol. 34, no. 8, pp. 1366–1379, 2010.
[25]
M. C. Morris, D. A. Evans, C. C. Tangney et al., “Dietary copper and high saturated and trans fat intakes associated with cognitive decline,” Archives of Neurology, vol. 63, no. 8, pp. 1085–1088, 2006.
[26]
P. G. Reeves, F. H. Nielsen, and G. C. Fahey Jr., “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet,” Journal of Nutrition, vol. 123, no. 11, pp. 1939–1951, 1993.
[27]
National Institute of Health, Guide for the Care and Use of Laboratory Animals, NIH Publication no. 85-23, National Research Council, Bethesda, Md, USA, 1985.
[28]
K. A. Cockell, A. T. L. Wotherspoon, B. Belonje et al., “Limited effects of combined dietary copper deficiency/iron overload on oxidative stress parameters in rat liver and plasma,” Journal of Nutritional Biochemistry, vol. 16, no. 12, pp. 750–756, 2005.
[29]
C. D. Davis and S. Newman, “Inadequate dietary copper increases tumorigenesis in the Min mouse,” Cancer Letters, vol. 159, no. 1, pp. 57–62, 2000.
[30]
G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, Boston, Mass, USA, 4th edition, 1998.
[31]
M. Berkovitch, E. Heyman, R. Afriat et al., “Copper and zinc blood levels among children with nonorganic failure to thrive,” Clinical Nutrition, vol. 22, no. 2, pp. 183–186, 2003.
[32]
C. Terrés-Martos, M. Navarro-Alarcón, F. Martín-Lagos, H. López-G de la Serrana, and M. C. López-Martínez, “Determination of copper levels in serum of healthy subjects by atomic absorption spectrometry,” Science of The Total Environment, vol. 198, no. 1, pp. 97–103, 1997.
[33]
S. Martínez-Subiela, F. Tecles, and J. J. Ceron, “Comparison of two automated spectrophotometric methods for ceruloplasmin measurement in pigs,” Research in Veterinary Science, vol. 83, no. 1, pp. 12–19, 2007.
[34]
P. J. Twomey, A. S. Wierzbicki, I. M. Hose, A. Viljoen, and T. M. Reynolds, “Percentage non-ceruloplasmin bound copper,” Clinical Biochemistry, vol. 40, no. 9-10, pp. 749–750, 2007.
[35]
J. Folch, M. Lees, and G. H. Sloane Stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957.
[36]
C. A. Marra and M. J. T. De Alaniz, “Neutral and polar lipid metabolism in liver microsomes of growing rats fed a calcium-deficient diet,” Biochimica et Biophysica Acta, vol. 1686, no. 3, pp. 220–237, 2005.
[37]
K. Yagi, “A simple fluorometric assay for lipoperoxide in blood plasma,” Biochemical Medicine, vol. 15, no. 2, pp. 212–216, 1976.
[38]
K. M. Miranda, M. G. Espey, and D. A. Wink, “A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite,” Nitric Oxide, vol. 5, no. 1, pp. 62–71, 2001.
[39]
A. Z. Reznick and L. Packer, “Oxidative damage to proteins: spectrophotometric method for carbonyl assay,” Methods in Enzymology, vol. 233, pp. 357–363, 1994.
[40]
M. E. Anderson and A. Meister, “Enzymic assay of GSSG plus GSH,” Methods in Enzymology, vol. 105, pp. 448–450, 1984.
[41]
J. L. Buttriss and A. T. Diplock, “High-performance liquid chromatography methods for vitamin E in tissues,” Methods in Enzymology, vol. 105, pp. 131–138, 1984.
[42]
M. Bagnati, R. Bordone, C. Perugini, C. Cau, E. Albano, and G. Bellomo, “Cu(I) availability paradoxically antagonizes antioxidant consumption and lipid peroxidation during the initiation phase of copper-induced LDL oxidation,” Biochemical and Biophysical Research Communications, vol. 253, no. 2, pp. 235–240, 1998.
[43]
I. Carlberg and B. Mannervik, “Glutathione reductase,” Methods in Enzymology, vol. 113, pp. 484–490, 1985.
[44]
N. Botha, M. M. Gehringer, T. G. Downing, M. van de Venter, and E. G. Shephard, “The role of microcystin-LR in the induction of apoptosis and oxidative stress in CaCo2 cells,” Toxicon, vol. 43, no. 1, pp. 85–92, 2004.
[45]
M. Zana, Z. Janka, and J. Kálmán, “Oxidative stress: a bridge between Down's syndrome and Alzheimer's disease,” Neurobiology of Aging, vol. 28, no. 5, pp. 648–676, 2007.
[46]
D. Praticò, “Oxidative stress hypothesis in Alzheimer's disease: a reappraisal,” Trends in Pharmacological Sciences, vol. 29, no. 12, pp. 609–615, 2008.
[47]
F. Song, A. Poljak, G. A. Smythe, and P. Sachdev, “Plasma biomarkers for mild cognitive impairment and Alzheimer's disease,” Brain Research Reviews, vol. 61, no. 2, pp. 69–80, 2009.
[48]
F. Mangialasche, M. C. Polidori, R. Monastero et al., “Biomarkers of oxidative and nitrosative damage in Alzheimer's disease and mild cognitive impairment,” Ageing Research Reviews, vol. 8, no. 4, pp. 285–305, 2009.
[49]
A. Skoumalová and J. Hort, “Blood markers of oxidative stress in Alzheimer's disease,” Journal of Cellular and Molecular Medicine, vol. 16, pp. 2291–2300, 2012.
[50]
E. A. Kosenko, G. Aliev, L. A. Tikhonova, Y. Li, A. C. Poghosyan, and Y. G. Kaminsky, “Antioxidant status and energy state of erythrocytes in Alzheimer dementia: probing for markers,” CNS & Neurological Disorders—Drug Targets, vol. 11, no. 7, pp. 926–932, 2012.
[51]
N. López, C. Tormo, I. De Blas, I. Llinares, and J. Alom, “Oxidative stress in Alzheimer's disease and mild cognitive impairment with high sensitivity and specificity,” Journal of Alzheimer's Disease, vol. 33, pp. 823–829, 2013.
[52]
M. C. Badía, E. Giraldo, F. Dasí, et al., “Reductive stress in young healthy individuals at risk of Alzheimer disease,” Free Radical Biology & Medicine, vol. 63, pp. 274–279, 2013.
[53]
A. Campbell, M. A. Smith, L. M. Sayre, S. C. Bondy, and G. Perry, “Mechanisms by which metals promote events connected to neurodegenerative diseases,” Brain Research Bulletin, vol. 55, no. 2, pp. 125–132, 2001.
[54]
L. Rossi, R. Squitti, L. Calabrese, G. Rotilio, and P. M. Rossini, “Alteration of peripheral markers of copper homeostasis in Alzheimer's disease patients: implications in aetiology and therapy,” Journal of Nutrition, Health and Aging, vol. 11, no. 5, pp. 408–417, 2007.
[55]
J. H. Viles, “Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases,” Coordination Chemistry Reviews, vol. 256, no. 19-20, pp. 2271–2284, 2012.
[56]
R. Squitti, “Metals in alzheimer's disease: a systemic perspective,” Frontiers in Bioscience, vol. 17, no. 2, pp. 451–472, 2012.
[57]
S. Kojima, O. Matsuki, T. Nomura et al., “Localization of glutathione and induction of glutathione synthesis- related proteins in mouse brain by low doses of γ-rays,” Brain Research, vol. 808, no. 2, pp. 262–269, 1998.
[58]
Y. Sharma, S. Bashir, M. Irshad, T. C. Nag, and T. D. Dogra, “Dimethoate-induced effects on antioxidant status of liver and brain of rats following subchronic exposure,” Toxicology, vol. 215, no. 3, pp. 173–181, 2005.
[59]
R. Dringen, “Metabolism and functions of glutathione in brain,” Progress in Neurobiology, vol. 62, no. 6, pp. 649–671, 2000.
[60]
R. Dringen, “Oxidative and antioxidative potential of brain microglial cells,” Antioxidants and Redox Signaling, vol. 7, no. 9-10, pp. 1223–1233, 2005.
[61]
V. Pallottini, C. Martini, A. M. Bassi, P. Romano, G. Nanni, and A. Trentalance, “Rat HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased reactive oxygen species content,” Journal of Hepatology, vol. 44, no. 2, pp. 368–374, 2006.
[62]
F. W. Pfrieger and N. Ungerer, “Cholesterol metabolism in neurons and astrocytes,” Progress in Lipid Research, vol. 50, no. 4, pp. 357–371, 2011.
[63]
V. Leoni and C. Caccia, “Oxysterols as biomarkers in neurodegenerative diseases,” Chemistry and Physics of Lipids, vol. 164, no. 6, pp. 515–524, 2011.
[64]
M. Stefani and G. Liguri, “Cholesterol in Alzheimer's disease: unresolved questions,” Current Alzheimer Research, vol. 6, no. 1, pp. 15–29, 2009.
[65]
S. Takeda, N. Sato, K. Ikimura, H. Nishino, H. Rakugi, and R. Morishita, “Increased blood-grain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model,” Neurobiology of Aging, vol. 34, no. 8, pp. 2064–2070, 2013.
[66]
J. Wang, K. Ohno-Matsui, and I. Morita, “Cholesterol enhances amyloid β deposition in mouse retina by modulating the activities of Aβ-regulating enzymes in retinal pigment epithelial cells,” Biochemical and Biophysical Research Communications, vol. 424, no. 4, pp. 704–709, 2012.
[67]
J. L. Galbete, T. Rodriguez-Martin, E. Peressini, P. Modena, R. Bianchi, and G. Forloni, “Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway,” Biochemical Journal, vol. 348, no. 2, pp. 307–313, 2000.
[68]
P. A. Svensson, M. C. Englund, E. Markstr?m, et al., “Copper induces the expression of cholesterogenic genes in human macrophages,” Atherosclerosis, vol. 169, no. 1, pp. 71–76, 2003.
[69]
D. L. Sparks, C. Ziolkowski, T. Lawmaster, and T. Martin, “Influence of water quality on cholesterol-induced tau pathology: preliminary data,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 987023, 7 pages, 2011.
[70]
C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010.
[71]
C. R. Jack Jr., V. J. Lowe, S. D. Weigand, et al., “Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease,” Brain, vol. 132, part 5, pp. 1355–1365, 2009.
[72]
H. Zetterberg, k. Blennow, and E. Hanse, “Amyloid beta and APP as biomarkers for Alzheimer's disease,” Experimental Gerontology, vol. 45, no. 1, pp. 23–29, 2010.
[73]
A. Tamaoka, T. Fukushima, N. Sawamura et al., “Amyloid β protein in plasma from patients with sporadic Alzheimer' s disease,” Journal of the Neurological Sciences, vol. 141, no. 1-2, pp. 65–68, 1996.
[74]
P. Lewczuk, J. Kornhuber, E. Vanmechelen et al., “Amyloid β peptides in plasma in early diagnosis of Alzheimer's disease: a multicenter study with multiplexing,” Experimental Neurology, vol. 223, no. 2, pp. 366–370, 2010.
[75]
P. J. Crouch, S. M. Harding, A. R. White, J. Camakaris, A. I. Bush, and C. L. Masters, “Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease,” The International Journal of Biochemistry & Cell Biology, vol. 40, no. 2, pp. 181–198, 2008.
[76]
E. Tamagno, G. Robino, A. Obbili et al., “H2O2 and 4-hydroxynonenal mediate amyloid β-induced neuronal apoptosis by activating JNKs and p38MAPK,” Experimental Neurology, vol. 180, no. 2, pp. 144–155, 2003.
[77]
B. R. Ahn, H. E. Moon, H. R. Kim, H. A. Jung, and J. S. Choi, “Neuroprotective effect of edible brown alga Eisenia bicyclis on amyloid betapeptide-induced toxicity in PC12 cells,” Archives of Pharmacal Research, vol. 35, no. 11, pp. 1989–1998, 2012.
[78]
T. Luo, W. Jiang, Y. Kong et al., “The protective effects of jatrorrhizine on β-amyloid (25-35)-induced neurotoxicity in rat cortical neurons,” CNS & Neurological Disorders Drug Targets, vol. 11, no. 8, pp. 1030–1037, 2012.
[79]
V. V. dos Santos, D. B. Santos, G. Lach, et al., “Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ1-40) administration in mice,” Behavioural Brain Research, vol. 244, pp. 107–115, 2013.
[80]
T. Harkany, I. Abrahám, C. Kónya, et al., “Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy,” Reviews in the Neurosciences, vol. 11, no. 4, pp. 329–382, 2000.
[81]
C.-A. Yang, Y.-H. Chen, S.-C. Ke et al., “Correlation of copper interaction, copper-driven aggregation, and copper-driven H2O2 formation with Aβ40 conformation,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 607861, 7 pages, 2011.
[82]
D. Paola, C. Domenicotti, M. Nitti et al., “Oxidative stress induces increase in intracellular amyloid β-protein production and selective activation of βI and βII PKCs in NT2 cells,” Biochemical and Biophysical Research Communications, vol. 268, no. 2, pp. 642–646, 2000.
[83]
E. Tamagno, M. Parola, P. Bardini et al., “β-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways,” Journal of Neurochemistry, vol. 92, no. 3, pp. 628–636, 2005.
[84]
C.-J. Lin, H.-C. Huang, and Z.-F. Jiang, “Cu(II) interaction with amyloid-β peptide: a review of neuroactive mechanisms in AD brains,” Brain Research Bulletin, vol. 82, no. 5-6, pp. 235–242, 2010.
[85]
D. Galasko and T. J. Montine, “Biomarkers of oxidative damage and inflammation in Alzheimer’s disease,” Biomarkers in Medicine, vol. 4, no. 1, pp. 27–36, 2010.
[86]
N. Arnal, M. J. de Alaniz, and C. A. Marra, “Cytotoxic effects of copper overload on human-derived lung and liver cells in culture,” Biochimica et Biophysica Acta, vol. 1820, no. 7, pp. 931–939, 2012.
[87]
K.-I. Saito, J. S. Elce, J. E. Hamos, and R. A. Nixon, “Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 7, pp. 2628–2632, 1993.
[88]
R. A. Nixon, “The calpains in aging and aging-related diseases,” Ageing Research Reviews, vol. 2, no. 4, pp. 407–418, 2003.
[89]
F. Trinchese, M. Fa', S. Liu et al., “Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease,” The Journal of Clinical Investigation, vol. 118, no. 8, pp. 2796–2807, 2008.
[90]
S. W. Scheff and D. A. Price, “Synaptic pathology in Alzheimer's disease: a review of ultrastructural studies,” Neurobiology of Aging, vol. 24, no. 8, pp. 1029–1046, 2003.
[91]
P. C. Amadoruge and K. J. Barnham, “Alzheimer's disease and metals: a review of the involvement of cellular membrane receptors in metallosignalling,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 542043, 9 pages, 2011.
[92]
M. Costa, O. Cantoni, M. de Mars, and D. E. Swartzendruber, “Toxic metals produce an S-phase-specific cell cycle block,” Research Communications in Chemical Pathology and Pharmacology, vol. 38, no. 3, pp. 405–419, 1982.
[93]
R. Newhook, H. Hirtle, K. Byrne, and M. E. Meek, “Releases from copper smelters and refineries and zinc plants in Canada: human health exposure and risk characterization,” Science of the Total Environment, vol. 301, no. 1–3, pp. 23–41, 2003.
[94]
N. Arnal, M. J. de Alaniz, and C. A. Marra, “Involvement of copper overload in human diseases,” in Metals in Biology Systems, pp. 1–28, Research Signpost, 2010.
[95]
F. Y. Leung, “Trace elements in parenteral micronutrition,” Clinical Biochemistry, vol. 28, no. 6, pp. 561–566, 1995.
[96]
J. A. Cuthbert, “Wilson's disease: a new gene and an animal model for an old disease,” Journal of Investigative Medicine, vol. 43, no. 4, pp. 323–336, 1995.
[97]
I.-L. Notkola, R. Sulkava, J. Pekkanen et al., “Serum total cholesterol, apolipoprotein E ε4 allele, and Alzheimer's disease,” Neuroepidemiology, vol. 17, no. 1, pp. 14–20, 1998.
[98]
R. Squitti, D. L. Sparks, T. U. Hoogenraad, and G. J. Brewer, “Copper status in Alzheimer's disease and other neurodegenerative disorders: genetics, mechanisms, neurophysiology, and therapies,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 903940, 2 pages, 2011.
[99]
R. Squitti, “Copper dysfunction in Alzheimer's disease: from meta-anlysis of biochemical studies to new insight into genetics,” Journal of Trace Elements in Medicine and Biology, vol. 26, no. 2-3, pp. 93–96, 2012.