全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Monitoring of Heavy Metals Content in Soil Collected from City Centre and Industrial Areas of Misurata, Libya

DOI: 10.1155/2013/312581

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present paper deals with the assessment of heavy metals in soil and roadside dust around Misurata City Centre and industrial areas/roads in the period of October 2011–May 2012. The levels of Pb, Fe, Zn, Ni, Cd, Cr, and Cu in settled dust samples collected near small streets, playgrounds, gas stations and main streets in the Misurata Area have been determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Also, the levels of same heavy metals in industrial areas have been determined. Metal concentration trend variation was also discussed in relation with traffic density and other sources of fugitive emission around different sites on each road/area. The overall mean concentration for main streets was significantly higher ( ) than for other small streets, where Misurata has been the centre of fierce fighting and is located in a frontline battle zone in the Libyan war; therefore most of metal concentrations in surface soil in the fighting area Tripoli Street and Benghazi Street were higher than those from the other sites (outside fighting area). 1. Introduction Global industrialization and human social and agricultural activities have an effect on environmental pollution and the global ecosystem. The pollution of soil by heavy metals from automobile sources is a serious environmental issue. These metals are released during different operations of the road transport such as combustion, component wear, fluid leakage, and corrosion of metals. Lead, cadmium, copper, and zinc are the major metal pollutants of the roadside environments and are released from fuel burning, wear out of tires, leakage of oils, and corrosion of batteries, and metallic parts such as radiators [1]. Intake of heavy metals. In urban area, heavy metals in urban soil and urban road dusts can be accumulated in human body via direct inhalation, ingestion, and dermal contact absorption. The most important sources of heavy metals in the environment are the anthropogenic activities such as mining, smelting procedures, steel and iron industry, chemical industry, traffic, and agriculture as well as domestic activities [2–12]. Chemical and metallurgical industries are the most important sources of heavy metals in soil [13–15]. Tracing an life and the environment [16]. The problem of environmental pollution due to toxic metals has begun to cause concern now in most of the major cities. Pollution of the environment with toxic metals has increased dramatically since the onset of the industrial revolution [17]. Soil pollution by heavy metals, such as cadmium, lead, chromium,

References

[1]  L. M. J. Dolan, H. Van Bohemen, P. Whelan et al., “Towards the sustainable development of modern road ecosystem,” in The Ecology of Transportation: Managing Mobility For the Environment, J. Davenport and J. L. Davenport, Eds., pp. 275–331, Springer, Amsterdam, The Netherlands, 2006.
[2]  I. Suciu, C. Cosma, M. Todicǎ, S. D. Bolboacǎ, and L. J?ntschi, “Analysis of soil heavy metal pollution and pattern in central transylvania,” International Journal of Molecular Sciences, vol. 9, no. 4, pp. 434–453, 2008.
[3]  E. I. B. Chopin and B. J. Alloway, “Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain,” Water, Air, and Soil Pollution, vol. 182, no. 1–4, pp. 245–261, 2007.
[4]  C. Stihi, A. Bancuta, I. V. Popescu et al., “Air pollution studies using PIXE and ICP methods,” Journal of Physics, vol. 41, no. 1, article 070, pp. 565–568, 2006.
[5]  R. Garcia and E. Millán, “Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain),” Chemosphere, vol. 37, no. 8, pp. 1615–1625, 1998.
[6]  X. Li, C. S. Poon, and P. S. Liu, “Heavy metal contamination of urban soils and street dusts in Hong Kong,” Applied Geochemistry, vol. 16, no. 11-12, pp. 1361–1368, 2001.
[7]  N. Sezgin, H. K. Ozcan, G. Demir, S. Nemlioglu, and C. Bayat, “Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway,” Environment International, vol. 29, no. 7, pp. 979–985, 2004.
[8]  B. Viard, F. Pihan, S. Promeyrat, and J. C. Pihan, “Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, graminaceae and land snails,” Chemosphere, vol. 55, no. 10, pp. 1349–1359, 2004.
[9]  G. Nabulo, H. Oryem-Origa, and M. Diamond, “Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda,” Environmental Research, vol. 101, no. 1, pp. 42–52, 2006.
[10]  S. R. Oliva and A. J. F. Espinosa, “Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources,” Microchemical Journal, vol. 86, no. 1, pp. 131–139, 2007.
[11]  M. Kampa and E. Castanas, “Human health effects of air pollution,” Environmental Pollution, vol. 151, no. 2, pp. 362–367, 2008.
[12]  L. Guo-li, L. Da-xue, and L. Quan-ming, “Heavy metals contamination characteristics in soil of different mining activity zone Trans,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 1, pp. 207–211, 2008.
[13]  A. Pantelica, V. Cercasov, E. Steinnes, P. Bode, and B. Wolterbeek, in Proceedings of the 4th National Conference of Applied Physics (NCAP '08), pp. 25–26, Galati, Romania, September 2008.
[14]  W. de Vries, P. F. R?mkens, and G. Schütze, “Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals,” Reviews of Environmental Contamination and Toxicology, vol. 191, pp. 91–130, 2007.
[15]  V. Cojocaru, A. Pantelicǎ, E. Pincovschi, and I. I. Georgescu, “EDXRF versus INAA in a pollution control of soil,” Journal of Radioanalytical and Nuclear Chemistry, vol. 268, no. 1, pp. 71–78, 2006.
[16]  Bangalore Metropolitan Rapid Transport Limited, Environmental Impact Analysis, 2006.
[17]  J. O. Nriagu, “Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere,” Nature, vol. 279, no. 5712, pp. 409–411, 1979.
[18]  F. Cabrera, L. Clemente, E. Díaz Barrientos, R. López, and J. M. Murillo, “Heavy metal pollution of soils affected by the Guadiamar toxic flood,” Science of the Total Environment, vol. 242, no. 1–3, pp. 117–129, 1999.
[19]  R. Wittig, General Aspects of Bio-Monitoring Heavy Metals by Plants, Plants as Bio-Monitors. Indicators for Heavy Metal in Terrestrial Environment, VCH Press, Weinheim, Germany, 1993.
[20]  X. Chen, X. Xia, S. Wu, F. Wang, and X. Guo, “Mercury in urban soils with various types of land use in Beijing, China,” Environmental Pollution, vol. 158, no. 1, pp. 48–54, 2010.
[21]  B. J. Alloway, Heavy Metals in Soils, Chapman & Hall, London, UK, 1995.
[22]  S. P. Mcgrath and P. J. Loveland, The Soil Geochemical Atlas of England and Wales, Blackie Academic & Professional, London, UK, 1992.
[23]  ICRCL, Interdepartmental Committee on the Redevelopment of Contaminated Land. Guidance on the Assessment and Redevelopment of Contaminated Land. Guidance Note. 59/83, Department of Environment, London, UK, 1987.
[24]  G. Muller, “Index of geo-accumulation in sediments of the Rhine River,” Geo Journal, vol. 24, no. 2, pp. 108–118, 1969.
[25]  Y. Ji, Y. Feng, J. Wu, T. Zhu, Z. Bai, and C. Dua, “Using geo-accumulation index to study source profiles of soil dust in China,” Journal of Environmental Sciences, vol. 20, no. 5, pp. 571–578, 2008.
[26]  CEPA, (Chinese Environmental Protection Administration, Elemental Background Values of Soils in China, Environmental Science Press of China, Beijing, China, 1990.
[27]  CEPA, (Chinese Environmental Protection Administration, Environmental Quality Standard For Soils (GB15618-1995), Beijing, China, 1995.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133