全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Breast Tissue 3D Segmentation and Visualization on MRI

DOI: 10.1155/2013/859746

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tissue segmentation and visualization are useful for breast lesion detection and quantitative analysis. In this paper, a 3D segmentation algorithm based on Kernel-based Fuzzy C-Means (KFCM) is proposed to separate the breast MR images into different tissues. Then, an improved volume rendering algorithm based on a new transfer function model is applied to implement 3D breast visualization. Experimental results have been shown visually and have achieved reasonable consistency. 1. Introduction Recently, magnetic resonance imaging (MRI) technique has been widely used in diagnosing and detecting diseases. It provides an effective mean of noninvasively mapping the anatomy of a subject. It works better than X-ray computed tomography (CT) at soft tissue, such as breast. The three-dimensional segmentation and visualization of breast are useful for breast lesion detection and quantitative analysis. Segmentation is applied to extract the interesting tissues in the breast. Several algorithms have been developed for segmenting the breast tissues. Threshold-based method, the gradient method, polynomial approximation method, the active contour models, and classifier segmentation are used in breast skin segmentation. Raba et al. [1] summarized that threshold-based method, the gradient method, polynomial approximation method, the active contour models, and classifier segmentation are the main methods commonly used in breast skin segmentation. Chen et al. [2] introduced the fuzzy clustering algorithm to the tumor region segmentation which had achieved better results. Kannan et al. [3] made the breast region segmentation by introducing new objective function of fuzzy c-means with the help of hypertangent function, Lagrangian multipliers method, and kernel functions. However, these studies did not separate the fat and fibroglandular tissues. Pathmanathan [4] suggested a region-growing method, which required the user to manually choose one or more seed points. This method got satisfying results, but it is inefficient and time consuming. Nie [5] used two steps to segment the breast: firstly, locating the skin border and lungs region by standard FCM algorithm and secondly, extracting the fibroglandular tissue by an adaptive FCM algorithm. However, it is a semiautomated method. Two kinds of methods are mainly applied in volume visualization, which are surface rendering and volume rendering. For surface rendering, Marching Cubes (MC) algorithm [6] is usually used which was developed by Lorensen and Cline in 1987. MC represents 3D objects by surface representations such as

References

[1]  D. Raba, A. Oliver, J. Martí, M. Peracaula, and J. Espunya, “Breast segmentation with pectoral muscle suppression on digital mammograms,” in Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA '05), pp. 471–478, Estoril, Portugal, June 2005.
[2]  W. Chen, M. L. Giger, and U. Bick, “A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images,” Academic Radiology, vol. 13, no. 1, pp. 63–72, 2006.
[3]  S. R. Kannan, S. Ramathilagam, and A. Sathya, “Robust fuzzy C-means in classifying breast tissue regions,” in Proceedings of the International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom '09), pp. 543–545, October 2009.
[4]  P. Pathmanathan, “Predicting tumour location by simulating the deformation of the breast using nonlinear elasticity and the finite element method,” Wolfson College University of Oxford, 2006.
[5]  K. Nie, J.-H. Chen, S. Chan et al., “Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,” Medical Physics, vol. 35, no. 12, pp. 5253–5262, 2008.
[6]  W. E. Lorensen and H. E. Cline, “Marching Cubes: a high resolution 3D surface construction algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987.
[7]  M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and Applications, vol. 8, no. 5, pp. 29–37, 1988.
[8]  N. Max, “Optical models for direct volume rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.
[9]  P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp factorization of the viewing transformation,” in Proceedings of the ACM Computer Graphics (SIGGRAPH '94), pp. 451–458, July 1994.
[10]  P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
[11]  R. O. Duda, P. E. Har, and D. G. Stork, Pattern Classification, Wiley-Interscience, New York, NY, USA, 2nd edition, 2001.
[12]  D. Zhang, “Kernel-based associative memories, clustering algorithms and their applications,” Nanjing University of Aeronautics and Astronautics, 2004 (Chinese).
[13]  D. Q. Zhang, “Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation,” in Proceedings of the International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2189–2192.
[14]  B. Wang, Q. Zhi, Z. Zhang, G. Geng, and M. Zhou, “Computation of center of mass for gray level image based on differential moments factor,” Journal of Computer-Aided Design and Computer Graphics, vol. 16, no. 10, pp. 1360–1365, 2004 (Chinese).
[15]  K. Engel, M. Hadwiger, and J. M. Kniss, “Real-time volume graphics,” in Proceedings of the ACM Computer Graphics (SIGGRAPH '04), article 29, 2004.
[16]  G. Kindlmann and J. W. Durkin, “Semi-automatic generation of transfer functions for direct volume rendering,” in Proceedings of the IEEE Symposium on Volume Visualization, pp. 79–86, Research Triangle Park, NC, USA, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413