全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SIVIC: Open-Source, Standards-Based Software for DICOM MR Spectroscopy Workflows

DOI: 10.1155/2013/169526

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantitative analysis of magnetic resonance spectroscopic imaging (MRSI) data provides maps of metabolic parameters that show promise for improving medical diagnosis and therapeutic monitoring. While anatomical images are routinely reconstructed on the scanner, formatted using the DICOM standard, and interpreted using PACS workstations, this is not the case for MRSI data. The evaluation of MRSI data is made more complex because files are typically encoded with vendor-specific file formats and there is a lack of standardized tools for reconstruction, processing, and visualization. SIVIC is a flexible open-source software framework and application suite that enables a complete scanner-to-PACS workflow for evaluation and interpretation of MRSI data. It supports conversion of vendor-specific formats into the DICOM MR spectroscopy (MRS) standard, provides modular and extensible reconstruction and analysis pipelines, and provides tools to support the unique visualization requirements associated with such data. Workflows are presented which demonstrate the routine use of SIVIC to support the acquisition, analysis, and delivery to PACS of clinical 1H MRSI datasets at UCSF. 1. Introduction MR spectroscopic imaging (MRSI) is a powerful imaging technique that provides spatially resolved metabolic information. It has been used together with anatomical and functional imaging to improve diagnostic specificity in multiple diseases, and it shows promise for improving treatment planning and the ability to monitor therapeutic response [1–11]. Despite great interest in this technology from the research and clinical communities, the adoption of advanced MRSI methods has been relatively slow, with a relatively limited number of studies having applied such techniques in clinical trials of new therapies. A major limitation in integrating MRSI into these studies has been the lack of commercially available methods for visualization and interpretation of the data. For conventional 3D imaging, the use of the DICOM [12] standard has resulted in a great deal of interoperability between software packages, imaging archives, and data. However, despite the existence of a DICOM standard for encoding MRSI data [13], current datasets are still created with vendor-specific proprietary formats. This results in a low degree of interoperability between imaging devices, picture archiving and communication systems (PACS), and software packages for analyzing the data. This situation is particularly problematic for multicenter collaborations, which require complicated workflows and file format

References

[1]  D. T. Okuda, R. Srinivasan, J. R. Oksenberg et al., “Genotype-phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures,” Brain, vol. 132, no. 1, pp. 250–259, 2009.
[2]  A. Laprie, I. Catalaa, E. Cassol et al., “Proton magnetic resonance spectroscopic imaging in newly diagnosed glioblastoma: predictive value for the site of postradiotherapy relapse in a prospective longitudinal study,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 3, pp. 773–781, 2008.
[3]  J. Chang, S. Thakur, G. Perera et al., “Image-fusion of MR spectroscopic images for treatment planning of gliomas,” Medical Physics, vol. 33, no. 1, pp. 32–40, 2006.
[4]  E. Westman, L.-O. Wahlund, C. Foy et al., “Magnetic resonance imaging and magnetic resonance spectroscopy for detection of early Alzheimers Disease,” Journal of Alzheimer's Disease, vol. 26, no. 3, pp. 307–319, 2011.
[5]  S. Josan, D. Spielman, Y.-F. Yen, R. Hurd, A. Pfefferbaum, and D. Mayer, “Fast volumetric imaging of ethanol metabolism in rat liver with hyperpolarized [1-13C]pyruvate,” NMR in Biomedicine, vol. 25, no. 8, pp. 993–999, 2012.
[6]  I. Park, G. Tamai, M. C. Lee et al., “Patterns of recurrence analysis in newly diagnosed glioblastoma multiforme after three-dimensional conformal radiation therapy with respect to pre-radiation therapy magnetic resonance spectroscopic findings,” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 2, pp. 381–389, 2007.
[7]  T. Sankar, Z. Caramanos, R. Assina et al., “Prospective serial proton MR spectroscopic assessment of response to tamoxifen for recurrent malignant glioma,” Journal of Neuro-Oncology, vol. 90, no. 1, pp. 63–76, 2008.
[8]  A. Stadlbauer, E. Moser, S. Gruber, C. Nimsky, R. Fahlbusch, and O. Ganslandt, “Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set,” Journal of Neurosurgery, vol. 101, no. 2, pp. 287–294, 2004.
[9]  A. A. Tzika, “Proton magnetic resonance spectroscopic imaging as a cancer biomarker for pediatric brain tumors,” International Journal of Oncology, vol. 32, no. 3, pp. 517–526, 2008.
[10]  F. W. Crawford, I. S. Khayal, C. McGue et al., “Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM,” Journal of Neuro-Oncology, vol. 91, no. 3, pp. 337–351, 2009.
[11]  K. Pinker, A. Stadlbauer, W. Bogner, S. Gruber, and T. H. Helbich, “Molecular imaging of cancer: MR spectroscopy and beyond,” European Journal of Radiology, vol. 81, no. 3, pp. 566–577, 2012.
[12]  DICOM, http://medical.nema.org/.
[13]  DICOM Standard Part 3PS 3.3-2011, section A.36.3.3, http://medical.nema.org/standard.html.
[14]  SIVIC, http://sourceforge.net/projects/sivic/.
[15]  J. C. Crane, M. P. Olson, and S. J. Nelson, “Open source DICOM MR spectroscopy software framework and plug-in for osiriX,” in RSNA Annual Meeting, 2009.
[16]  jMRUI, http://www.mrui.uab.es/mrui/mrui_Overview.shtml.
[17]  MIDAS, http://mrir.med.miami.edu:8000/midas/.
[18]  TARQUIN, http://tarquin.sourceforge.net/.
[19]  VTK, http://www.vtk.org/.
[20]  DCMTK, http://dicom.offis.de/dcmtk.php.en.
[21]  3D Slicer, http://www.slicer.org/.
[22]  OsiriX, http://www.osirix-viewer.com/.
[23]  SIVIC plug-in for OsiriX, http://sourceforge.net/projects/sivic/files/osirix_plugin/.
[24]  Slicer project week, 2010, http://www.na-mic.org/Wiki/index.php/2010_Summer_Project_Week_MRSI_module_and_SIVIC_interface.
[25]  Slicer project week, 2011, http://www.na-mic.org/Wiki/index.php/2011_Winter_Project_Week:MRSI_module_and_SIVIC_interface.
[26]  SIVIC command line tools, http://sivic.sourceforge.net/libsvk/html/index.html.
[27]  SFTP, http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol.
[28]  J. C. Crane, F. W. Crawford, and S. J. Nelson, “Grid enabled magnetic resonance scanners for near real-time medical image processing,” Journal of Parallel and Distributed Computing, vol. 66, no. 12, pp. 1524–1533, 2006.
[29]  DCM4CHEE, http://www.dcm4che.org/confluence/display/ee2/Home.
[30]  M. Wilson, G. Reynolds, R. A. Kauppinen, T. N. Arvanitis, and A. C. Peet, “A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data,” Magnetic Resonance in Medicine, vol. 65, no. 1, pp. 1–12, 2011.
[31]  D. Stefan, F. D. Cesare, A. Andrasescu et al., “Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package,” Measurement Science and Technology, vol. 20, no. 10, Article ID 104035, 2009.
[32]  C. H. Cunningham, D. B. Vigneron, A. P. Chen et al., “Design of flyback echo-planar readout gradients for magnetic resonance spectroscopic imaging,” Magnetic Resonance in Medicine, vol. 54, no. 5, pp. 1286–1289, 2005.
[33]  S. J. Nelson, E. Ozhinsky, Y. Li, I. W. Park, and J. Crane, “Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging,” Journal of Magnetic Resonance, vol. 229, pp. 187–197, 2013.
[34]  DCM4CHEE conformance, http://www.dcm4che.org/docs/conformance/dcm4chee-cs.pdf.
[35]  OsiriX conformance, http://www.osirix-viewer.com/DICOMConformanceStatements.pdf.
[36]  http://www.carestream.com/pacsv11_dicom_8g8913.pdf.
[37]  Philips conformance, http://incenter.medical.philips.com/doclib/getdoc.aspx?func=ll&objid=9332344&objaction=open.
[38]  Agfa impax 6.5 conformance, http://www.agfahealthcare.com/global/en/he/library/libraryopen?ID=28653428.
[39]  svkImageReader2 classes, http://sivic.sourceforge.net/libsvk/html/hierarchy.html.
[40]  D. Sundararajan, Digital Signal Processing: Theory and Practice, World Scientific, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133