全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Motion Detection in Diffusion MRI via Online ODF Estimation

DOI: 10.1155/2013/849363

Full-Text   Cite this paper   Add to My Lib

Abstract:

The acquisition of high angular resolution diffusion MRI is particularly long and subject motion can become an issue. The orientation distribution function (ODF) can be reconstructed online incrementally from diffusion-weighted MRI with a Kalman filtering framework. This online reconstruction provides real-time feedback throughout the acquisition process. In this article, the Kalman filter is first adapted to the reconstruction of the ODF in constant solid angle. Then, a method called STAR (STatistical Analysis of Residuals) is presented and applied to the online detection of motion in high angular resolution diffusion images. Compared to existing techniques, this method is image based and is built on top of a Kalman filter. Therefore, it introduces no additional scan time and does not require additional hardware. The performance of STAR is tested on simulated and real data and compared to the classical generalized likelihood ratio test. Successful detection of small motion is reported (rotation under 2°) with no delay and robustness to noise. 1. Introduction Diffusion MRI has provided a great tool for neuroscientists to understand and analyze in vivo the anatomy of the brain white matter fiber tracts that connect different areas of the cortex. The diffusion tensor model [1] has become increasingly popular, and the study of scalar indices derived from it has proved useful in the diagnosis of a wide range of neurological diseases [2, 3]. For several specific applications, like fiber tractography, this model is, however, known to be limited, and high angular resolution imaging techniques should be used instead, to reconstruct the model-free ensemble average propagator [4–6] or the orientation distribution function (ODF) [7–10]. The acquisition of high angular resolution diffusion images requires longer time than diffusion tensor imaging. Subjects are likely to move during these acquisitions, and we can identify at least three motivations to develop a proper method for the online detection of motion. First, images can be registered prior to diffusion model estimation; however this might increase partial volume effects [11], because of the relatively low spatial resolution of diffusion-weighted images and of interpolation in the registration procedure. This also modifies the variance properties of the image [12], which should be considered carefully for group studies. When the subject moves during acquisition, a warning could be issued, so as to take a decision accordingly. Depending on the number of images already acquired, the decision could be to restart

References

[1]  P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical Journal, vol. 66, no. 1, pp. 259–267, 1994.
[2]  D. K. Jones, Diffusion MRI: Theory, Methods, and Applications, University Press, Oxford, UK, 2010.
[3]  H. Johansen-Berg and T. E. J. Behrens, Eds., Diffusion MRI: From Quantitative Measurement to in-Vivo neuroanaTomy, Academic Press, 2009.
[4]  H.-E. Assemlal, D. Tschumperlé, and L. Brun, “Efficient computation of pdf-based characteristics from diffusion mr signal,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI '08), pp. 70–78, Springer, Berlin, Heidelberg, 2008.
[5]  E. Ozarslan, C. G. Koay, T. M. Shepherd, S. J. Blackband, and P. J. Basser, “Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space mri,” in Proceedings of the 17th International Society for Magnetic Resonance in Medicine Scientific (ISMRM '09), Hawaii, Hawaii, USA, April 2009.
[6]  M. Desc?teaux, R. Deriche, D. LeBihan, J. F. Mangin, and C. Poupon, “Diffusion propagator imaging: using laplace’s equation and multiple shell acquisitions to reconstruct the diffusion propagator,” in Proceedings of the Intelligent Platform Management Interface (IPMI '09), vol. 5636 of Lecture Notes in Computer Science, pp. 1–13, 2009.
[7]  D. S. Tuch, “Q-ball imaging,” Magnetic Resonance in Medicine, vol. 52, no. 6, pp. 1358–1372, 2004.
[8]  M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, “Regularized, fast, and robust analytical Q-ball imaging,” Magnetic Resonance in Medicine, vol. 58, no. 3, pp. 497–510, 2007.
[9]  I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil, and N. Harel, “Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle,” Magnetic Resonance in Medicine, vol. 64, no. 2, pp. 554–566, 2010.
[10]  A. Tristán-Vega, C. F. Westin, and S. Aja-Fernández, “Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging,” NeuroImage, vol. 47, no. 2, pp. 638–650, 2009.
[11]  A. Pfefferbaum, E. V. Sullivan, M. Hedehus, K. O. Lim, E. Adalsteinsson, and M. Moseley, “Agerelated decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging,” Magnetic Resonance in Medicine, vol. 44, no. 2, pp. 259–268, 2000.
[12]  G. K. Rohde, A. S. Barnett, P. J. Basser, and C. Pierpaoli, “Estimating intensity variance due to noise in registered images: applications to diffusion tensor MRI,” NeuroImage, vol. 26, no. 3, pp. 673–684, 2005.
[13]  D. K. Jones, M. A. Horsfield, and A. Simmons, “Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 42, no. 3, pp. 515–525, 1999.
[14]  N. G. Papadakis, C. D. Murrills, L. D. Hall, C. L. H. Huang, and T. Adrian Carpenter, “Minimal gradient encoding for robust estimation of diffusion anisotropy,” Magnetic Resonance Imaging, vol. 18, no. 6, pp. 671–679, 2000.
[15]  G. K. Rohde, A. S. Barnett, P. J. Basser, S. Marenco, and C. Pierpaoli, “Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI,” Magnetic Resonance in Medicine, vol. 51, no. 1, pp. 103–114, 2004.
[16]  A. Barmpoutis, B. C. Vemuri, and J. R. Forder, “Registration of high angular resolution diffusion MRI images using 4 th order tensors,” Lecture Notes in Computer Science, vol. 4791, no. 1, pp. 908–915, 2007.
[17]  A. Leemans and D. K. Jones, “The B-matrix must be rotated when correcting for subject motion in DTI data,” Magnetic Resonance in Medicine, vol. 61, no. 6, pp. 1336–1349, 2009.
[18]  M. Aksoy, C. Forman, M. Straka et al., “Real-time optical motion correction for diffusion tensor imaging,” Magnetic Resonance in Medicine, vol. 66, no. 2, pp. 366–378, 2011.
[19]  A. A. Alhamud, A. Hess, M. D. Tisdall, E. M. Meintjes, and A. J. van der Kouwe, “Implementation of real time motion correction in diffusion tensor imaging,” in Proceedings of the 19th International Society for Magnetic Resonance Society for Magnetic Resonance in Medicine (ISMRM '11), Montreal, Canada, May 2011.
[20]  T. Benner, A. J. van der Kouwe, and A. G. Sorensen, “Diffusion imaging with prospective motion correction and reacquisition,” Magnetic Resonance in Medicine, vol. 66, no. 1, pp. 154–167, 2011.
[21]  T. Kober, R. Gruetter, and G. Krueger, “Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain,” Neuroimage, vol. 59, no. 1, pp. 389–398, 2012.
[22]  C. Poupon, A. Roche, J. Dubois, J. F. Mangin, and F. Poupon, “Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering,” Medical Image Analysis, vol. 12, no. 5, pp. 527–534, 2008.
[23]  R. Deriche, J. Calder, and M. Descoteaux, “Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets,” Medical Image Analysis, vol. 13, no. 4, pp. 564–579, 2009.
[24]  A. Willsky and H. Jones, “A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems,” IEEE Transactions on Automatic Control, vol. 21, no. 1, pp. 108–112, 1976.
[25]  P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Clarendon, Oxford, UK, 1991.
[26]  C. G. Koay, E. ?zarslan, and C. Pierpaoli, “Probabilistic Identification and Estimation of Noise (PIESNO): a self-consistent approach and its applications in MRI,” Journal of Magnetic Resonance, vol. 199, no. 1, pp. 94–103, 2009.
[27]  M. Basseville and A. Benveniste, Detection of Abrupt Changes in Signals and Dynamical Systems, Lecture Notes in Control and Information Sciences, Springer, 1984.
[28]  M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Upper Saddle River, NJ, USA, 1993.
[29]  M. Basseville and A. Benveniste, “Design and comparative study of some sequential jump detection algorithms for digital signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31, no. 3, pp. 521–535, 1983.
[30]  G. W. Snedecor and W. G. Cochran, Statistical Methods, Iowa State University Press, 1989.
[31]  E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for Python, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413