全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computer-Aided Diagnosis Systems for Lung Cancer: Challenges and Methodologies

DOI: 10.1155/2013/942353

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer diagnosis. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can increase the patient’s chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches for lung cancer CAD systems. 1. Introduction Lung cancer remains the leading cause of cancer-related deaths in the US. In 2012, there were approximately 229,447 new cases of lung cancer and 159,124 related deaths [1]. Early diagnosis can improve the effectiveness of treatment and increase the patient’s chance of survival [2]. Positron emission tomography (PET), computed tomography (CT), low-dose computed tomography (LDCT), and contrast-enhanced computed tomography (CE-CT) are the most common noninvasive imaging modalities for detecting and diagnosing lung nodules. PET scans are used to discriminate between malignant and benign lung nodules. Early detection of the nodules can be based on CT and LDCT scans that allow for reconstructing the anatomy of and detecting the anatomic changes in the chest. The CE-CT allows for reconstructing the anatomy of the chest and assessing the detected nodule’s characteristics. A wealth of known publications have investigated the development of computer-aided diagnosis (CAD) systems for lung cancer from a host of different image modalities. The success of a particular CAD system can be measured in terms of accuracy of diagnosis, speed, and automation level. The goal of this paper is to overview different CAD systems for lung cancer proposed in literature. A schematic diagram of a typical CAD system for lung cancer is shown in Figure 1. The segmentation of lung tissues on chest images is a

References

[1]  American Cancer Society, Cancer facts and figures, 2012.
[2]  A. El-Baz and J. Suri, Lung Imaging and Computer Aided Diagnosis, Taylor & Francis, 2011.
[3]  S. Hu, E. A. Hoffman, and J. M. Reinhardt, “Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images,” IEEE Transactions on Medical Imaging, vol. 20, no. 6, pp. 490–498, 2001.
[4]  S. Ukil and J. M. Reinhardt, “Anatomy-guided lung lobe segmentation in X-ray CT images,” IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 202–214, 2009.
[5]  E. M. Van Rikxoort, B. De Hoop, S. Van De Vorst, M. Prokop, and B. Van Ginneken, “Automatic segmentation of pulmonary segments from volumetric chest CT scans,” IEEE Transactions on Medical Imaging, vol. 28, no. 4, pp. 621–630, 2009.
[6]  J. C. Ross, R. S. J. Estepar, A. D?az et al., “Lung extraction, lobe segmentation and hierarchical region assessment for quantitative analysis on high resolution computed tomography images,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '09), vol. 5762, pp. 690–698, 2009.
[7]  N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
[8]  Y. Yim, H. Hong, and Y. G. Shin, “Hybrid lung segmentation in chest CT images for computer-aided diagnosis,” in 7th International Workshop on Enterprise Networking and Computing in Healthcare Industry, HEALTHCOM 2005, pp. 378–383, kor, June 2005.
[9]  S. G. Armato, M. L. Giger, C. J. Moran, J. T. Blackburn, K. Doi, and H. MacMahon, “Computerized detection of pulmonary nodules on CT scans,” Radiographics, vol. 19, no. 5, pp. 1303–1311, 1999.
[10]  S. G. Armato III and W. F. Sensakovic, “Automated lung segmentation for thoracic CT: impact on computer-aided diagnosis,” Academic Radiology, vol. 11, no. 9, pp. 1011–1021, 2004.
[11]  J. Pu, J. K. Leader, B. Zheng et al., “A computational geometry approach to automated pulmonary fissure segmentation in CT examinations,” IEEE Transactions on Medical Imaging, vol. 28, no. 5, pp. 710–719, 2009.
[12]  J. Pu, J. Roos, C. A. Yi, S. Napel, G. D. Rubin, and D. S. Paik, “Adaptive border marching algorithm: automatic lung segmentation on chest CT images,” Computerized Medical Imaging and Graphics, vol. 32, no. 6, pp. 452–462, 2008.
[13]  Q. Gao, S. Wang, D. Zhao, and J. Liu, “Accurate lung segmentation for X-ray CT images,” in Proceedings of the 3rd International Conference on Natural Computation (ICNC '07), vol. 2, pp. 275–279, 2007.
[14]  Q. Wei, Y. Hu, G. Gelfand, and J. H. MacGregor, “Segmentation of lung lobes in high-resolution isotropic CT images,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 5, pp. 1383–1393, 2009.
[15]  X. Ye, X. Lin, J. Dehmeshki, G. Slabaugh, and G. Beddoe, “Shape-based computer-aided detection of lung nodules in thoracic CT images,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 7, pp. 1810–1820, 2009.
[16]  R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 3rd edition, 2007.
[17]  Y. Itai, H. Kim, S. Ishikawa et al., “Automatic segmentation of lung areas based on SNAKES and extraction of abnormal areas,” in Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '05), pp. 377–381, November 2005.
[18]  M. Silveira, J. Nascimento, and J. Marques, “Automatic segmentation of the lungs using robust level sets,” in Proceedings of the 29th IEEE Annual International Conference of Medicine and Biology Society (EMBS '07), pp. 4414–4417, 2007.
[19]  P. Annangi, S. Thiruvenkadam, A. Raja, H. Xu, X. Sun, and L. Mao, “Region based active contour method for x-ray lung segmentation using prior shape and lowlevel features,” in Proceedings of the 7th IEEE International Symposium on Biomedical Imaging: from Nano to Macro (ISBI '10), pp. 892–895, April 2010.
[20]  Y. Chen, H. D. Tagare, S. Thiruvenkadam et al., “Using prior shapes in geometric active contours in a variational framework,” International Journal of Computer Vision, vol. 50, no. 3, pp. 315–328, 2002.
[21]  T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001.
[22]  Y. Shi, F. Qi, Z. Xue et al., “Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics,” IEEE Transactions on Medical Imaging, vol. 27, no. 4, pp. 481–494, 2008.
[23]  B. van Ginneken, M. B. Stegmann, and M. Loog, “Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database,” Medical Image Analysis, vol. 10, no. 1, pp. 19–40, 2006.
[24]  A. Tsai, A. Yezzi, W. Wells et al., “A shape-based approach to the segmentation of medical imagery using level sets,” IEEE Transactions on Medical Imaging, vol. 22, no. 2, pp. 137–154, 2003.
[25]  R. C. Hardie, S. K. Rogers, T. Wilson, and A. Rogers, “Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs,” Medical Image Analysis, vol. 12, no. 3, pp. 240–258, 2008.
[26]  S. Sun, C. Bauer, and R. Beichel, “Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach,” IEEE Transactions on Medical Imaging, vol. 31, no. 2, pp. 449–460, 2012.
[27]  K. Li, X. Wu, D. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images-A graph-theoretic approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 119–134, 2006.
[28]  A. Besbes and N. Paragios, “Landmark-based segmentation of lungs while handling partial correspondences using sparse graph-based priors,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '11), pp. 989–995, 2011.
[29]  I. C. Sluimer, M. Niemeijer, and B. Van Ginneken, “Lung field segmentation from thin-slice CT scans in presence of severe pathology,” in Proceedings of the Progress in Biomedical Optics and Imaging—Medical Imaging, pp. 1447–1455, February 2004.
[30]  I. Sluimer, M. Prokop, and B. Van Ginneken, “Toward automated segmentation of the pathological lung in CT,” IEEE Transactions on Medical Imaging, vol. 24, no. 8, pp. 1025–1038, 2005.
[31]  M. Sofka, J. Wetzl, N. Birkbeck et al., “Multi-stage learning for robust lung segmentation in challenging CT volumes,” in Proceedings of the International Conference on Medical 27 Imaging Computing and Computer-Assisted Intervention (MICCAI '11), pp. 667–674, 2011.
[32]  T. T. J. P. Kockelkorn, E. M. Van Rikxoort, J. C. Grutters, and B. Van Ginneken, “Interactive lung segmentation in CT scans with severe abnormalities,” in Proceedings of the 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '10), pp. 564–567, April 2010.
[33]  P. Hua, Q. Song, M. Sonka, E. A. Hoffman, and J. M. Reinhardt, “Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '11), pp. 2072–2075, 2011.
[34]  A. El-Baz, G. Gimel'farb, and R. Falk, “A novel three-dimensional framework for automatic lung segmentation from low dose computed tompgraphy images,” in Lung Imaging and Computer Aided Diagnosis, A. El-Baz and J. Suri, Eds., chapter 1, pp. 1–15, Taylor & Francis, 2011.
[35]  A. El-Baz, G. Gimel'farb, R. Falk, M. Abou El-Ghar, T. Holland, and T. Shaffer, “A new stochastic framework for accurate lung segmentation,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '08), pp. 322–330, New York, NY, USA, September 2008.
[36]  A. El-Baz, G. Gimel’farb, R. Falk, T. Holland, and T. Shaffer, “A framework for unsupervised segmentation of lung tissues from low dose computed tomography images,” in Proceedings of the British Machine Vision Conference, pp. 855–865, University of Leeds, Leeds, UK, September 2008.
[37]  A. El-Baz and G. Gimelfarb, “EM based approximation of empirical distributions with linear combinations of discrete Gaussians,” in Proceedings of the IEEE International Conference Image Processing (ICIP '07), vol. 2, pp. 373–376, San Antonio, Tex, USA, September 2007.
[38]  A. El-Baz, A. Elnakib, F. Khalifa, M. Abou El-Ghar, R. Falk, and G. Gimelfarb, “Precise segmentation of 3d magnetic resonance angiography,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 7, pp. 2019–2029, 2012.
[39]  B. Abdollahi, A. Soliman, A. C. Civelek, X. F. Li, G. Gimel'farb, and A. El-Baz, “A novel 3D joint MGRF framework for precise lung segmentation,” in Proceedings of the MICCAI Workshop on Machine Learning in Medical Imaging, pp. 86–93, Nice, France, October 2012.
[40]  B. Abdollahi, A. Soliman, A. C. Civelek, X. Li, G. Gimel’farb, and A. El-Baz, “A novel gaussian scale space-based joint MGRF framework for precise lung segmentation,” in Proceedings of the IEEE International Conference Image Processing (ICIP '12), pp. 2029–2032, Orlando, Fla, USA, October 2012.
[41]  A. Ali, A. El-Baz, and A. Farag, “A novel framework for accurate lung segmentation using graph cuts,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '07), pp. 908–911, Arlington, Va, USA, April 2007.
[42]  P. Campadelli, E. Casiraghi, and D. Artioli, “A fully automated method for lung nodule detection from postero-anterior chest radiographs,” IEEE Transactions on Medical Imaging, vol. 25, no. 12, pp. 1588–1603, 2006.
[43]  A. M. Mendonca, J. A. da Silva, and A. Campilho, “Automatic delimitation of lung fields on chest radiographs,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '04), vol. 2, pp. 1287–1290, 2004.
[44]  P. Korfiatis, S. Skiadopoulos, P. Sakellaropoulos, C. Kalogeropoulou, and L. Costaridou, “Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT,” British Journal of Radiology, vol. 80, no. 960, pp. 996–1005, 2007.
[45]  J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern Recognition, vol. 19, no. 1, pp. 41–47, 1986.
[46]  Alliance for Lung Cancer Advocacy, Support, and Education: Early Detection and Diagnostic Imaging, 2011.
[47]  L. G. B. A. Quekel, A. G. H. Kessels, R. Goei, and J. M. A. Van Engelshoven, “Miss rate of lung cancer on the chest radiograph in clinical practice,” Chest, vol. 115, no. 3, pp. 720–724, 1999.
[48]  F. Li, S. Sone, H. Abe, H. MacMahon, S. G. Armato, and K. Doi, “Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings,” Radiology, vol. 225, no. 3, pp. 673–683, 2002.
[49]  P. M. Boiselle and C. S. White, New Techniques in Thoracic Imaging, Dekker, New York, NY, USA, 2002.
[50]  M. Kaneko, K. Eguchi, H. Ohmatsu et al., “Peripheral lung cancer: screening and detection with low-dose spinal CT versus radiography,” Radiology, vol. 201, no. 3, pp. 798–802, 1996.
[51]  O. S. Miettinen and C. I. Henschke, “CT screening for lung cancer: coping with nihilistic recommendations,” Radiology, vol. 221, no. 3, pp. 592–596, 2001.
[52]  C. I. Henschke, D. P. Naidich, D. F. Yankelevitz et al., “Early lung cancer action project: initial finding on repeat screening,” Cancer, vol. 92, no. 1, pp. 153–159, 2001.
[53]  S. J. Swensen, J. R. Jett, T. E. Hartman et al., “Lung cancer screening with CT: mayo clinic experience,” Radiology, vol. 226, no. 3, pp. 756–761, 2003.
[54]  H. Rusinek, D. P. Naidich, G. McGuinness et al., “Pulmonary nodule detection: low-dose versus conventional CT,” Radiology, vol. 209, no. 1, pp. 243–249, 1998.
[55]  K. Garg, R. L. Keith, T. Byers et al., “Randomized controlled trial with low-dose spiral CT for lung cancer screening: feasibility study and preliminary results,” Radiology, vol. 225, no. 2, pp. 506–510, 2002.
[56]  T. Nawa, T. Nakagawa, S. Kusano, Y. Kawasaki, Y. Sugawara, and H. Nakata, “Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies,” Chest, vol. 122, no. 1, pp. 15–20, 2002.
[57]  S. Sone, F. Li, Z. G. Yang et al., “Results of three-year mass screening programme for lung cancer using mobile low-dose spiral computed tomography scanner,” The British Journal of Cancer, vol. 84, no. 1, pp. 25–32, 2001.
[58]  S. C. Lo, M. T. Freedman, J. S. Lin, and S. K. Mun, “Automatic lung nodule detection using profile matching and back-propagation neural network techniques,” Journal of Digital Imaging, vol. 6, no. 1, pp. 48–54, 1993.
[59]  F. Mao, W. Qian, J. Gaviria, and L. P. Clarke, “Fragmentary window filtering for multiscale lung nodule detection: preliminary study,” Academic Radiology, vol. 5, no. 4, pp. 306–311, 1998.
[60]  T. Matsumoto, H. Yoshimura, K. Doi et al., “Image feature analysis of false-positive diagnoses produced by automated detection of lung nodules,” Investigative Radiology, vol. 27, no. 8, pp. 587–597, 1992.
[61]  X. W. Xu, S. Katsuragawa, K. Ashizawa, H. MacMahon, and K. Doi, “Analysis of image features of histograms of edge gradient for false positive reduction in lung nodule detection in chest radiographs,” in Proceedings of the Medical Imaging: Image Processing, vol. 3338, pp. 318–326, February 1998.
[62]  A. A. Enquobahrie, A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke, “Automated detection of pulmonary nodules from whole lung helical CT scans: performance comparison for isolated and attached nodules,” in Progress in Biomedical Optics and Imaging—Medical Imaging: Imaging Processing, Proceedings of SPIE, pp. 791–800, February 2004.
[63]  Y. Mekada, T. Kusanagi, Y. Hayase et al., “Detection of small nodules from 3D chest X-ray CT images based on shape features,” in Proceedings of the Computer Assisted Radiology and Surgery (CARS), vol. 1256, pp. 971–976, 2003.
[64]  J. P. Ko and M. Betke, “Chest CT: automated nodule detection and assessment of change over time—preliminary experience,” Radiology, vol. 218, no. 1, pp. 267–273, 2001.
[65]  B. Zhao, M. S. Ginsberg, R. A. Lefkowitz, L. Jiang, C. Cooper, and L. H. Schwartz, “Application of the LDM algorithm to identify small lung nodules on low-dose MSCT scans,” in Proceedings of the Progress in Biomedical Optics and Imaging—Medical Imaging 2004: Imaging Processing, pp. 818–823, February 2004.
[66]  S. Chang, H. Emoto, D. N. Metaxas, and L. Axe, “Pulmonary micronodule detection from 3D chest CT,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '04), vol. 3217, pp. 821–828, 2004.
[67]  H. Takizawa, K. Shigemoto, S. Yamamoto et al., “A recognition method of lung nodule shadows in X-Ray CT images using 3D object models,” International Journal of Image and Graphics, vol. 3, no. 4, pp. 533–545, 2003.
[68]  Q. Li and K. Doi, “New selective nodule enhancement filter and its application for significant improvement of nodule detection on computed tomography,” in Medical Imaging: Imaging Processing, Proceedings of SPIE, pp. 1–9, February 2004.
[69]  D. S. Paik, C. F. Beaulieu, G. D. Rubin et al., “Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT,” IEEE Transactions on Medical Imaging, vol. 23, no. 6, pp. 661–675, 2004.
[70]  P. R. S. Mendonca, R. Bhotika, S. A. Sirohey, W. D. Turner, J. V. Miller, and R. S. Avila, “Model-based analysis of local shape for lesion detection in CT scans,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '05), vol. 8, pp. 688–695, 2005.
[71]  Y. Lee, T. Hara, H. Fujita, S. Itoh, and T. Ishigaki, “Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique,” IEEE Transactions on Medical Imaging, vol. 20, no. 7, pp. 595–604, 2001.
[72]  R. Wiemker, P. Rogalla, A. Zwartkruis, and T. Blaffert, “Computer aided lung nodule detection on high resolution CT data,” in Medical Imaging: Image Processing, vol. 4684 of Proceedings of SPIE, pp. 677–688, February 2002.
[73]  W. J. Kostis, A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke, “Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images,” IEEE Transactions on Medical Imaging, vol. 22, no. 10, pp. 1259–1274, 2003.
[74]  K. Awai, K. Murao, A. Ozawa et al., “Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists' detection performance,” Radiology, vol. 230, no. 2, pp. 347–352, 2004.
[75]  T. Ezoe, H. Takizawa, S. Yamamoto et al., “An automatic detection method of lung cancers including ground glass opacities from chest X-ray CT images,” in Medical Imaging: Image Processing, vol. 4684 of Proceedings of SPIE, pp. 1672–1680, February 2002.
[76]  C. I. Fetita, F. Prteux, C. Beigelman-Aubry, and P. Grenier, “3D automated lung nodule segmentation in HRCT,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '03), vol. 2878, pp. 626–634, 2003.
[77]  M. Tanino, H. Takizawa, S. Yamamoto, T. Matsumoto, Y. Tateno, and T. Iinuma, “A detection method of ground glass opacities in chest X-ray CT images using automatic clustering techniques,” in Medical Imaging: Image Processing, vol. 5032 of Proceedings of SPIE, pp. 1728–1737, February 2003.
[78]  M. N. Gurcan, B. Sahiner, N. Petrick et al., “Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system,” Medical Physics, vol. 29, no. 11, pp. 2552–2558, 2002.
[79]  M. Kubo, K. Kubota, N. Yamada et al., “A CAD system for lung cancer based on low dose single-slice CT image,” in Medical Imaging: Image Processing, vol. 4684 of Proceedings of SPIE, pp. 1262–1269, February 2002.
[80]  N. Yamada, M. Kubo, Y. Kawata et al., “ROI extraction of chest CT images using adaptive opening filter,” in Medical Imaging: Image Processing, vol. 5032 of Proceedings of SPIE, pp. 869–876, February 2003.
[81]  K. Kanazawa, Y. Kawata, N. Niki et al., “Computer-aided diagnosis for pulmonary nodules based on helical CT images,” Computerized Medical Imaging and Graphics, vol. 22, no. 2, pp. 157–167, 1998.
[82]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Computeraided diagnosis of pulmonary nodules using three-dimensional thoracic CT images,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '01), vol. 2208, pp. 1393–1394, 2001.
[83]  M. Betke and J. P. Ko, “Detection of pulmonary nodules on CT and volumetric assessment of change over time,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '99), pp. 245–252, 1999.
[84]  W. Lampeter, “ANDS-V1 computer detection of lung nodules,” in Medical Imaging: Image Processing, vol. 0555 of Proceedings of SPIE, pp. 253–261, 1985.
[85]  T. Oda, M. Kubo, Y. Kawata et al., “A detection algorithm of lung cancer candidate nodules on multi-slice CT images,” in Medical Imaging 2002: Image Processing, vol. 5370 of Proceedings of SPIE, pp. 1354–1361, February 2002.
[86]  S. Saita, T. Oda, M. Kubo et al., “Nodule detection algorithm based on multi-slice CT images for lung cancer screening,” in Medical Imaging: Imaging Processing, Proceedings of SPIE, pp. 1083–1090, February 2004.
[87]  M. S. Brown, M. F. McNitt-Gray, J. G. Goldin, R. D. Suh, J. W. Sayre, and D. R. Aberle, “Patient-specific models for lung nodule detection and surveillance in CT images,” IEEE Transactions on Medical Imaging, vol. 20, no. 12, pp. 1242–1250, 2001.
[88]  M. L. Giger, N. Ahn, K. Doi, H. MacMahon, and C. E. Metz, “Computerized detection of pulmonary nodules in digital chest images: use of morphological filters in reducing false-positive detections,” Medical Physics, vol. 17, no. 5, pp. 861–865, 1990.
[89]  J. S. Lin, P. A. Ligomenides, Y. M. F. Lure, M. T. Freedman, and S. K. Mun, “Application of neural networks for improvement of lung nodule detection in radiographic images,” in Proceedings of the Symposium for Computer Assisted Radiology (SCAR '92), pp. 108–115, 1992.
[90]  M. J. Carreira, D. Cabello, M. G. Penedo, and J. M. Pard, “Computer aided lung nodule detection in chest radiography,” Image Analysis Applications and Computer Graphics, vol. 1024, pp. 331–338, 1995.
[91]  R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley Interscience, New Jersey, NJ, USA, 2nd edition, 2001.
[92]  K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, San Diego, Calif, USA, 2nd edition, 1990.
[93]  G. Q. Wei, L. Fan, and J. Qian, “Automatic detection of nodules attached to vessels in lung CT by volume projection analysis,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '02), vol. 2488, pp. 746–752, 2002.
[94]  H. Takizawa, S. Yamamoto, T. Matsumoto, Y. Tateno, T. Iinuma, and M. Matsumoto, “Recognition of lung nodules from X-ray CT images using 3D Markov random field models,” in Medical Imaging: Image Processing, vol. 4684 of Proceedings of SPIE, pp. 716–725, February 2002.
[95]  D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.
[96]  D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” Parallel Distributed Processing, vol. 1, pp. 318–362, 1986.
[97]  L. Zhang, M. Fang, D. P. Naidich, and C. L. Novak, “Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies,” in Medical Imaging: Imaging Processing, Proceedings of SPIE, pp. 1709–1719, February 2004.
[98]  V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, Berlin, Germany, 1995.
[99]  V. N. Vapnik, The Nature of Statistical Theory, Wiley, New York, NY, USA, 1998.
[100]  K. Suzuki, “Pixel-based machine-learning PML in medical imaging,” International Journal of Biomedical Imaging, vol. 2012, Article ID 792079, 18 pages, 2012.
[101]  K. Suzuki, I. Horiba, and N. Sugie, “Neural edge enhancer for supervised edge enhancement from noisy images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1582–1596, 2003.
[102]  K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, “Extraction of left ventricular contours from left ventriculograms by means of a neural edge detector,” IEEE Transactions on Medical Imaging, vol. 23, no. 3, pp. 330–339, 2004.
[103]  S. C. B. Lo, S. L. A. Lou, J. S. Lin, M. T. Freedman, M. V. Chien, and S. K. Mun, “Artificial convolution neural network techniques and applications for lung nodule detection,” IEEE Transactions on Medical Imaging, vol. 14, no. 4, pp. 711–718, 1995.
[104]  S. C. B. Lo, H. P. Chan, J. S. Lin, H. Li, M. T. Freedman, and S. K. Mun, “Artificial convolution neural network for medical image pattern recognition,” Neural Networks, vol. 8, no. 7-8, pp. 1201–1214, 1995.
[105]  J. S. Lin, B. Shih-Chung, A. Hasegawa, M. T. Freedman, and S. K. Mun, “Reduction of false positives in lung nodule detection using a two-level neural classification,” IEEE Transactions on Medical Imaging, vol. 15, no. 2, pp. 206–217, 1996.
[106]  S. C. B. Lo, H. Li, Y. Wang, L. Kinnard, and M. T. Freedman, “A multiple circular path convolution neural network system for detection of mammographic masses,” IEEE Transactions on Medical Imaging, vol. 21, no. 2, pp. 150–158, 2002.
[107]  B. Sahiner, H. P. Chan, N. Petrick et al., “Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images,” IEEE Transactions on Medical Imaging, vol. 15, no. 5, pp. 598–610, 1996.
[108]  D. Wei, R. M. Nishikawa, and K. Doi, “Application of texture analysis and shift-invariant artificial neural network to microcalcification cluster detection,” Radiology, vol. 201, pp. 696–696, 1996.
[109]  W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, “An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms,” Medical Physics, vol. 23, no. 4, pp. 595–601, 1996.
[110]  W. Zhang, K. Doi, M. L. Giger, Y. Wu, R. M. Nishikawa, and R. A. Schmidt, “Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network,” Medical Physics, vol. 21, no. 4, pp. 517–524, 1994.
[111]  K. Suzuki, S. G. Armato, F. Li, S. Sone, and K. Doi, “Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography,” Medical Physics, vol. 30, no. 7, pp. 1602–1617, 2003.
[112]  K. Suzuki, H. Yoshida, J. N?ppi, and A. H. Dachman, “Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: suppression of rectal tubes,” Medical Physics, vol. 33, no. 10, pp. 3814–3824, 2006.
[113]  K. Suzuki, H. Abe, H. MacMahon, and K. Doi, “Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN),” IEEE Transactions on Medical Imaging, vol. 25, no. 4, pp. 406–416, 2006.
[114]  K. Suzuki, “A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD),” Physics in Medicine and Biology, vol. 54, no. 18, pp. S31–S45, 2009.
[115]  K. Suzuki, J. Shiraishi, H. Abe, H. MacMahon, and K. Doi, “False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network,” Academic Radiology, vol. 12, no. 2, pp. 191–201, 2005.
[116]  H. Arimura, S. Katsuragawa, K. Suzuki et al., “Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening,” Academic Radiology, vol. 11, no. 6, pp. 617–629, 2004.
[117]  K. Suzuki, F. Li, S. Sone, and K. Doi, “Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network,” IEEE Transactions on Medical Imaging, vol. 24, no. 9, pp. 1138–1150, 2005.
[118]  K. Suzuki, D. C. Rockey, and A. H. Dachman, “CT colonography: advanced computer-aided detection scheme utilizing MTANNs for detection of "missed" polyps in a multicenter clinical trial,” Medical Physics, vol. 37, no. 1, pp. 12–21, 2010.
[119]  K. Suzuki, H. Yoshida, J. N?ppi, S. G. Armato, and A. H. Dachman, “Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography,” Medical Physics, vol. 35, no. 2, pp. 694–703, 2008.
[120]  K. Suzuki, J. Zhang, and J. Xu, “Massive-training artificial neural network coupled with laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography,” IEEE Transactions on Medical Imaging, vol. 29, no. 11, pp. 1907–1917, 2010.
[121]  J. W. Xu and K. Suzuki, “Massive-training support vector regression and Gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography,” Medical Physics, vol. 38, no. 4, pp. 1888–1902, 2011.
[122]  F. Li, H. Arimura, K. Suzuki et al., “Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization,” Radiology, vol. 237, no. 2, pp. 684–690, 2005.
[123]  M. L. Giger, K. T. Bae, and H. MacMahon, “Computerized detection of pulmonary nodules in computed tomography images,” Investigative Radiology, vol. 29, no. 4, pp. 459–465, 1994.
[124]  S. G. Armato, M. L. Giger, and H. MacMahon, “Automated detection of lung nodules in CT scans: preliminary results,” Medical Physics, vol. 28, no. 8, pp. 1552–1561, 2001.
[125]  A. Farag, A. El-Baz, G. Gimelfarb, R. Falk, and S. Hushek, “Automatic detection and recognition of lung abnormalities in helical CT images using deformable templates,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '04), vol. 2, pp. 856–864, Saint-Malo, France, September 2004.
[126]  A. A. Farag, A. El-Baz, G. Gimelfarb, M. A. El-Ghar, and T. Eldiasty, “Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for cad system design,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '05), vol. 8, pp. 720–728, Palm Springs, Calif, USA, October 2005.
[127]  Z. Ge, B. Sahiner, H. P. Chan et al., “Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting,” Medical Physics, vol. 32, no. 8, pp. 2443–2454, 2005.
[128]  S. Matsumoto, H. L. Kundel, J. C. Gee, W. B. Gefter, and H. Hatabu, “Pulmonary nodule detection in CT images with quantized convergence index filter,” Medical Image Analysis, vol. 10, no. 3, pp. 343–352, 2006.
[129]  R. Yuan, P. M. Vos, and P. L. Cooperberg, “Computer-aided detection in screening CT for pulmonary nodules,” American Journal of Roentgenology, vol. 186, no. 5, pp. 1280–1287, 2006.
[130]  J. Pu, B. Zheng, J. K. Leader, X. H. Wang, and D. Gur, “An automated CT based lung nodule detection scheme using geometric analysis of signed distance field,” Medical Physics, vol. 35, no. 8, pp. 3453–3461, 2008.
[131]  A. Retico, P. Delogu, M. E. Fantacci, I. Gori, and A. Preite Martinez, “Lung nodule detection in low-dose and thin-slice computed tomography,” Computers in Biology and Medicine, vol. 38, no. 4, pp. 525–534, 2008.
[132]  B. Golosio, G. L. Masala, A. Piccioli et al., “A novel multithreshold method for nodule detection in lung CT,” Medical Physics, vol. 36, no. 8, pp. 3607–3618, 2009.
[133]  K. Murphy, B. van Ginneken, A. M. R. Schilham, B. J. de Hoop, H. A. Gietema, and M. Prokop, “A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification,” Medical Image Analysis, vol. 13, no. 5, pp. 757–770, 2009.
[134]  T. Messay, R. C. Hardie, and S. K. Rogers, “A new computationally efficient CAD system for pulmonary nodule detection in CT imagery,” Medical Image Analysis, vol. 14, no. 3, pp. 390–406, 2010.
[135]  M. Tan, R. Deklerck, B. Jansen Nad, M. Bister, and J. Cornelis, “A novel computer-aided lung nodule detection system for CT images,” Medical Physics, vol. 38, no. 10, pp. 5630–5645, 2011.
[136]  A. Riccardi, T. S. Petkov, G. Ferri, M. Masotti, and R. Campanini, “Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification,” Medical Physics, vol. 38, no. 4, pp. 1962–1971, 2011.
[137]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Quantitative surface characterization of pulmonary nodules based on thin-section CT images,” IEEE Transactions on Nuclear Science, vol. 45, no. 4, pp. 2132–2138, 1998.
[138]  Y. Kawata, N. Niki, H. Ohmatsu, and N. Moriyama, “A deformable surface model based on boundary and region information for pulmonary nodule segmentation from 3-D thoracic CT images,” IEICE Transactions on Information and Systems, vol. 86, no. 9, pp. 1921–1930, 2003.
[139]  V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Minimal surfaces based object segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 4, pp. 394–398, 1997.
[140]  D. F. Yankelevitz, A. P. Reeves, W. J. Kostis, B. Zhao, and C. I. Henschke, “Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation,” Radiology, vol. 217, no. 1, pp. 251–256, 2000.
[141]  D. F. Yankelevitz, R. Gupta, B. Zhao, and C. I. Henschke, “Small pulmonary nodules: evaluation with repeat CT—preliminary experience,” Radiology, vol. 212, no. 2, pp. 561–566, 1999.
[142]  B. Zhao, D. Yankelevitz, A. Reeves, and C. Henschke, “Two-dimensional multi-criterion segmentation of pulmonary nodules on helical CT images,” Medical Physics, vol. 26, no. 6, pp. 889–895, 1999.
[143]  B. Zhao, A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke, “Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images,” Optical Engineering, vol. 38, no. 8, pp. 1340–1347, 1999.
[144]  R. Wiemker and A. Zwartkruis, “Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT,” International Congress Series, vol. 1230, no. 1, pp. 653–658, 2001.
[145]  N. Xu, N. Ahuja, and R. Bansal, “Automated lung nodule segmentation using dynamic programming and EM based classification,” in Medical Imaging: Image Processing, vol. 4684 of Proceedings of SPIE, pp. 666–676, February 2002.
[146]  J. P. Ko, H. Rusinek, E. L. Jacobs et al., “Small pulmonary nodules: volume measurement at chest CT—phantom study,” Radiology, vol. 228, no. 3, pp. 864–870, 2003.
[147]  W. J. Kostis, D. F. Yankelevitz, A. P. Reeves, S. C. Fluture, and C. I. Henschke, “Small pulmonary nodules, reproducibility of three-dimensional volumetric measurement and estimation of time to follow-up CT,” Radiology, vol. 231, no. 2, pp. 446–452, 2004.
[148]  K. Okada, D. Comaniciu, N. Dalal, and A. Krishnan, “A robust algorithm for characterizing anisotropic local structures,” in Proceedings of the European Conference on Computer Vision, vol. 1, pp. 549–561, 2004.
[149]  K. Okada, D. Comaniciu, and A. Krishnan, “Scale selection for anisotropic scale-space: application to volumetric tumor characterization,” in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), vol. 1, pp. I594–I601, July 2004.
[150]  K. Okada, D. Comaniciu, and A. Krishnan, “Robust 3D segmentation of pulmonary nodules in multislice CT images,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '04), vol. 2, pp. 881–889, 2004.
[151]  K. Okada, D. Comaniciu, and A. Krishnan, “Robust anisotropic Gaussian fitting for volumetric characterization of pulmonary nodules in multislice CT,” IEEE Transactions on Medical Imaging, vol. 24, no. 2, pp. 409–423, 2005.
[152]  J. M. Kuhnigk, V. Dicken, L. Bornemann, D. Wormanns, S. Krass, and H. O. Peitgen, “Fast automated segmentation and reproducible volumetry of pulmonary metastases in CT-scans for therapy monitoring,” in Proceedings of the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '04), vol. 3217, pp. 933–941, September 2004.
[153]  J. M. Kuhnigk, V. Dicken, L. Bornemann et al., “Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans,” IEEE Transactions on Medical Imaging, vol. 25, no. 4, pp. 417–434, 2006.
[154]  W. Mullally, M. Betke, J. Wang, and J. P. Ko, “Segmentation of nodules on chest computed tomography for growth assessment,” Medical Physics, vol. 31, no. 4, pp. 839–848, 2004.
[155]  H. Shen, B. Goebel, and B. Odry, “A new algorithm for local surface smoothing with application to chest wall nodule segmentation in lung CT data,” in Medical Imaging: Imaging Processing, vol. 5370, pp. 1519–1526, February 2004.
[156]  L. Zhang, T. Zhang, C. L. Novak, D. P. Naidich, and D. A. Moses, “A computer-based method of segmenting ground glass nodules in pulmonary CT images: comparison to expert radiologists' interpretations,” in Proceedings of the Medical Imaging: image Processing, vol. 5747, pp. 113–123, February 2005.
[157]  K. Okada, U. Akdemir, and A. Krishnan, “Blob segmentation using joint space-intensity likelihood ratio test: application to 3D tumor segmentation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), vol. 2, pp. 437–444, June 2005.
[158]  K. Okada, V. Ramesh, A. Krishnan, M. Singh, and U. Akdemir, “Robust pulmonary nodule segmentation in CT: improving performance for juxtapleural cases,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '05), vol. 8, pp. 781–789, 2005.
[159]  K. Okada, M. Singh, and V. Ramesh, “Prior-constrained scale-space mean shift,” in Proceedings of the British Machine Vision Conference, pp. 829–838, 2006.
[160]  A. El-Baz, A. Farag, G. Gimel'farb, R. Falk, M. A. El-Ghar, and T. Eldiasty, “A framework for automatic segmentation of lung nodules from low dose chest CT scans,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), vol. 3, pp. 611–614, August 2006.
[161]  A. Farag, A. El-Baz, G. Gimel'farb, R. Falk, M. A. El-Ghar, and T. Eldiasty, “Appearance models for robust segmentation of pulmonary nodules in 3D LDCT chest images,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '06), vol. 9, pp. 662–670, 2006.
[162]  B. van Ginneken, “Supervised probabilistic segmentation of pulmonary nodules in CT scans,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '06), vol. 9, pp. 912–919, 2006.
[163]  T. W. Way, L. M. Hadjiiski, B. Sahiner et al., “Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours,” Medical Physics, vol. 33, no. 7, pp. 2323–2337, 2006.
[164]  T. W. Way, H. P. Chan, M. M. Goodsitt et al., “Effect of CT scanning parameters on volumetric measurements of pulmonary nodules by 3D active contour segmentation: a phantom study,” Physics in Medicine and Biology, vol. 53, no. 5, pp. 1295–1312, 2008.
[165]  L. R. Goodman, M. Gulsun, L. Washington, P. G. Nagy, and K. L. Piacsek, “Inherent variability of CT lung nodule measurements in vivo using semiautomated volumetric measurements,” American Journal of Roentgenology, vol. 186, no. 4, pp. 989–994, 2006.
[166]  J. Zhou, S. Chang, D. N. Metaxas, B. Zhao, M. S. Ginsberg, and L. H. Schwartz, “An automatic method for ground-glass opacity nodule detection and segmentation from CT studies,” in Proceedings of the 29th IEEE Annual International Conference of Medicine and Biology Society (EMBS '06), vol. 1, pp. 3062–3065, 2006.
[167]  J. Zhou, S. Chang, D. N. Metaxas, B. Zhao, L. H. Schwartz, and M. S. Ginsberg, “Automatic detection and segmentation of ground-glass opacity nodules,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '06), vol. 9, pp. 784–791, 2006.
[168]  Y. Yoo, H. Shim, I. D. Yun, K. W. Lee, and S. U. Lee, “Segmentation of ground glass opacities by asymmetric multi-phase deformable model,” in Medical Imaging: Image Processing, vol. 6144, February 2006.
[169]  J. Wang, R. Engelmann, and Q. Li, “Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique,” Medical Physics, vol. 34, no. 12, pp. 4678–4689, 2007.
[170]  S. D. Nie, L. H. Li, and Z. X. Chen, “A CI feature-based pulmonary nodule segmentation using three-domain mean shift clustering,” in Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR '07), vol. 223, pp. 223–227, November 2007.
[171]  H. Kobatake and S. Hashimoto, “Convergence index filter for vector fields,” IEEE Transactions on Image Processing, vol. 8, no. 8, pp. 1029–1038, 1999.
[172]  Y. Zheng, K. Steiner, T. Bauer, J. Yu, D. Shen, and C. Kambhamettu, “Lung nodule growth analysis from 3D CT data with a coupled segmentation and registration framework,” in Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV '07), October 2007.
[173]  Y. Zheng, C. Kambhamettu, T. Bauer, and K. Steiner, “Accurate estimation of pulmonary nodule's growth rate in ct images with nonrigid registration and precise nodule detection and segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '09), pp. 101–108, June 2009.
[174]  W. A. Browder, A. P. Reeves, T. V. Apananosovich, M. D. Cham, D. F. Yankelevitz, and C. I. Henschke, “Automated volumetric segmentation method for growth consistency of nonsolid pulmonary nodules in high-resolution,” in Medical Imaging: Computer-Aided Diagnosis, vol. 6514 of Proceedings of SPIE, February 2007.
[175]  J. Dehmeshki, H. Amin, M. Valdivieso, and X. Ye, “Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach,” IEEE Transactions on Medical Imaging, vol. 27, no. 4, pp. 467–480, 2008.
[176]  S. Diciotti, G. Picozzi, M. Falchini, M. Mascalchi, N. Villari, and G. Valli, “3-D segmentation algorithm of small lung nodules in spiral CT images,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 1, pp. 7–19, 2008.
[177]  T. Kubota, A. K. Jerebko, M. Dewan, M. Salganicoff, and A. Krishnan, “Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models,” Medical Image Analysis, vol. 15, no. 1, pp. 133–154, 2011.
[178]  T. Kubota, A. Jerebko, M. Salganicoff, M. Dewan, and A. Krishnan, “Robust segmentation of pulmonary nodules of various densities: from ground-glass opacities to solid nodules,” in Proceedings of the International Workshop on Pulmonary Image Processing, pp. 253–262, 2008.
[179]  Y. Zheng, C. Kambhamettu, T. Bauer, and K. Steiner, “Estimation of ground-glass opacity measurement in CT lung images,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '08), vol. 11, pp. 238–245, 2008.
[180]  Q. Wang, E. Song, R. Jin et al., “Segmentation of lung nodules in computed tomography images using dynamic programming and multidirection fusion techniques,” Academic Radiology, vol. 16, no. 6, pp. 678–688, 2009.
[181]  Y. Tao, L. Lu, M. Dewan et al., “Multi-level ground glass nodule detection and segmentation in CT lung images,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '09), vol. 1, pp. 715–723, 2009.
[182]  A. A. Farag, H. Abdelmunim, J. Graham et al., “Variational approach for segmentation of lung nodules,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '11), pp. 2157–2160, 2011.
[183]  O. Zinoveva, D. Zinovev, S. A. Siena, D. S. Raicu, J. Furst, and S. G. Armato, “A texture-based probabilistic approach for lung nodule segmentation,” in Proceedings of the International Conference on Image Analysis and Recognition, vol. 2, pp. 21–30, 2011.
[184]  Y. D. Jirapatnakul, Y. D. Mulman, A. P. Reeves, D. F. Yankelevitz, and C. I. Henschke, “Segmentation of juxtapleural pulmonary nodules using a robust surface estimate,” International Journal of Biomedical Imaging, vol. 2011, Article ID 632195, 14 pages, 2011.
[185]  A. P. Reeves, A. B. Chan, D. F. Yankelevitz, C. I. Henschke, B. Kressler, and W. J. Kostis, “On measuring the change in size of pulmonary nodules,” IEEE Transactions on Medical Imaging, vol. 25, no. 4, pp. 435–450, 2006.
[186]  S. Diciotti, S. Lombardo, M. Falchini, G. Picozzi, and M. Mascalchi, “Automated segmentation refinement of small lugn nodules in CT scans by local shape analysis,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 12, pp. 3418–3428, 2011.
[187]  J. D. Kiffer, S. U. Berlangieri, A. M. Scott et al., “The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer,” Lung Cancer, vol. 19, no. 3, pp. 167–177, 1998.
[188]  M. T. Munley, L. B. Marks, C. Scarfone et al., “Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects,” Lung Cancer, vol. 23, no. 2, pp. 105–114, 1999.
[189]  U. Nestle, K. Walter, S. Schmidt et al., “18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis,” International Journal of Radiation Oncology Biology Physics, vol. 44, no. 3, pp. 593–597, 1999.
[190]  K. Mah, C. B. Caldwell, Y. C. Ung et al., “The impact of 18 FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study,” International Journal of Radiation Oncology Biology Physics, vol. 52, no. 2, pp. 339–350, 2002.
[191]  Y. E. Erdi, K. Rosenzweig, A. K. Erdi et al., “Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET),” Radiotherapy and Oncology, vol. 62, no. 1, pp. 51–60, 2002.
[192]  J. Bradley, W. L. Thorstad, S. Mutic et al., “Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 1, pp. 78–86, 2004.
[193]  E. Deniaud-Alexandre, E. Touboul, D. Lerouge et al., “Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 5, pp. 1432–1441, 2005.
[194]  A. Van Der Wel, S. Nijsten, M. Hochstenbag et al., “Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 3, pp. 649–655, 2005.
[195]  H. Ashamalla, S. Rafla, K. Parikh et al., “The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 4, pp. 1016–1023, 2005.
[196]  M. Hatt, F. Lamare, N. Boussion et al., “Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET,” Physics in Medicine and Biology, vol. 52, no. 12, pp. 3467–3491, 2007.
[197]  M. Halt, C. C. Le Rest, A. Turzo, C. Roux, and D. Visvikis, “A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET,” IEEE Transactions on Medical Imaging, vol. 28, no. 6, pp. 881–893, 2009.
[198]  I. Avazpour, R. E. Roslan, P. Bayat, M. I. Saripan, A. J. Nordin, and R. S. A. R. Abdullah, “Segmenting CT images of bronchogenic carcinoma with bone metastases using PET intensity markers approach,” Radiology and Oncology, vol. 43, no. 3, pp. 180–186, 2009.
[199]  M. Hatt, C. Cheze le Rest, P. Descourt et al., “Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications,” International Journal of Radiation Oncology Biology Physics, vol. 77, no. 1, pp. 301–308, 2010.
[200]  H. T. Winer-Muram, S. G. Jennings, R. D. Tarver et al., “Volumetric growth rate of stage I lung cancer prior to treatment: serial CT scanning,” Radiology, vol. 223, no. 3, pp. 798–805, 2002.
[201]  A. Borghesi, D. Farina, and R. Maroldi, “Small pulmonary nodules: our preliminary experience in volumetric analysis of doubling times,” Terarecon Inc, CA, Clinical Case Studies, http://www.terarecon.com/news/casestudy_PulmonaryNodules-BorghesiEtAl.pdf, 2007.
[202]  D. Wormanns, G. Kohl, E. Klotz et al., “Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility,” European Radiology, vol. 14, no. 1, pp. 86–92, 2004.
[203]  M. P. Revel, C. Lefort, A. Bissery et al., “Pulmonary nodules: preliminary experience with three-dimensional evaluation,” Radiology, vol. 231, no. 2, pp. 459–466, 2004.
[204]  J. M. Goo, T. Tongdee, R. Tongdee, K. Yeo, C. F. Hildebolt, and K. T. Bae, “Volumetric measurement of synthetic lung nodules with multi-detector row CT: effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy,” Radiology, vol. 235, no. 3, pp. 850–856, 2005.
[205]  S. G. Jennings, H. T. Winer-Muram, M. Tann, J. Ying, and I. Dowdeswell, “Distribution of stage I lung cancer growth rates determined with serial volumetric CT measurements,” Radiology, vol. 241, no. 2, pp. 554–563, 2006.
[206]  A. C. Jirapatnakul, A. P. Reeves, A. M. Biancardi, D. F. Yankelevitz, and C. I. Henschke, “Semi-automated measurement of pulmonary nodule growth without explicit segmentation,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI '09), pp. 855–858, July 2009.
[207]  A. Marchianò, E. Calabrò, E. Civelli et al., “Pulmonary nodules: volume repeatability at multidetector CT lung cancer screening,” Radiology, vol. 251, no. 3, pp. 919–925, 2009.
[208]  A. El-Baz, G. Gimel'farb, R. Falk, and M. Abo El-Ghar, “Automatic analysis of 3D low dose CT images for early diagnosis of lung cancer,” Pattern Recognition, vol. 42, no. 6, pp. 1041–1051, 2009.
[209]  M. M. Trivedi and J. C. Bezdek, “Low-level segmentation of aerial images with fuzzy clustering,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16, no. 4, pp. 589–598, 1986.
[210]  K. Suzuki and K. Doi, “How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?” Academic Radiology, vol. 12, no. 10, pp. 1333–1341, 2005.
[211]  H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, “Classifier design for computer-aided diagnosis: effects of finite sample size on the mean performance of classical and neural network classifiers,” Medical Physics, vol. 26, no. 12, pp. 2654–2668, 1999.
[212]  B. Sahiner, H. P. Chan, and L. Hadjiiski, “Classifier performance prediction for computer-aided diagnosis using a limited dataset,” Medical Physics, vol. 35, no. 4, pp. 1559–1570, 2008.
[213]  A. El-Baz, A. Farag, R. Falk, and R. La Rocca, “Detection, visualization, and identification of lung abnormalities in chest spiral CT scans: phase I,” in Proceedings of the International Conference on Biomedical Engineering, pp. 38–42, Cairo, Egypt, December 2002.
[214]  A. El-Baz, A. Farag, R. Falk, and R. La Rocca, “Automatic identification of lung abnormalities in chest spiral CT scans,” in Proceedings of the International Conference Non Acoustics, Speech, and Signal Processing (ICASSP '03), pp. 261–264, Hong kong, China, April 2003.
[215]  A. El-Baz, A. Farag, R. Falk, and R. La Rocca, “A unified approach for detection, visualization, and identification of lung abnormalities in chest spiral CT scans,” in Proceedings of the Computer Assisted Radiology and Surgery (CARS '03), pp. 998–1004, London, UK, June 2003.
[216]  A. Farag, A. El-Baz, and G. Gimel'farb, “Detection and recognition of lung nodules in spiral CT images using deformable templates and bayesian post-classification,” in Proceedings of IEEE International Conference Image Processing (ICIP '04), vol. 5, pp. 2921–2924, Singapore, October 2004.
[217]  A. Farag, A. El-Baz, and G. Gimel'farb, “Detection and recognition of lung abnormalities using deformable templates,” in Proceedings of the IARP International Conference Pattern Recognition (ICPR '04), vol. 3, pp. 738–741, Cambridge, UK, August 2004.
[218]  A. El-Baz, A. Farag, G. Gimel'farb, R. Falk, and M. Abo El-Ghar, “A novel level set-based computer-aided detection system for automatic detection of lung nodules in low dose chest computed tomography scans,” in Lung Imaging and Computer Aided Diagnosis, A. El-Baz and J. Suri, Eds., chapter 10, pp. 221–238, Taylor & Francis, 2011.
[219]  S. G. Armato, G. McLennan, M. F. McNitt-Gray et al., “Lung image database consortium: developing a resource for the medical imaging research community,” Radiology, vol. 232, no. 3, pp. 739–748, 2004.
[220]  Q. Li, F. Li, K. Suzuki et al., “Computer-aided diagnosis in thoracic CT,” Seminars in Ultrasound, CT and MRI, vol. 26, no. 5, pp. 357–363, 2005.
[221]  Q. Li, “Recent progress in computer-aided diagnosis of lung nodules on thin-section CT,” Computerized Medical Imaging and Graphics, vol. 31, no. 4-5, pp. 248–257, 2007.
[222]  J. G. Goldin, M. S. Brown, and I. Petkovska, “Computer-aided diagnosis in lung nodule assessment,” Journal of Thoracic Imaging, vol. 23, no. 2, pp. 97–104, 2008.
[223]  I. Sluimer, A. Schilham, M. Prokop, and B. Van Ginneken, “Computer analysis of computed tomography scans of the lung: a survey,” IEEE Transactions on Medical Imaging, vol. 25, no. 4, pp. 385–405, 2006.
[224]  C. C. Jaffe, “Measures of response: RECIST, WHO, and new alternatives,” Journal of Clinical Oncology, vol. 24, no. 20, pp. 3245–3251, 2006.
[225]  M. A. Gavrielides, L. M. Kinnard, K. J. Myers, and N. Petrick, “Noncalcified lung nodules: volumetric assessment with thoracic CT,” Radiology, vol. 251, no. 1, pp. 26–37, 2009.
[226]  S. G. Armato, F. Li, M. L. Giger, H. MacMahon, S. Sone, and K. Doi, “Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program,” Radiology, vol. 225, no. 3, pp. 685–692, 2002.
[227]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Classification of pulmonary nodules in thin-section CT images based on shape characterization,” in Proceedings of the International Conference on Image Processing (ICIP '97), vol. 3, Part 2 (of 3), pp. 528–530, October 1997.
[228]  T. Kubota and K. Okada, “Estimating diameters of pulmonary nodules with competition-diffusion and robust ellipsoid fit,” in Proceedings of the ICCV Workshop on Computer Vision for Biomedical Image Applications, pp. 324–334, 2005.
[229]  J. Bi, S. Periaswamy, K. Okada et al., “Computer aided detection via asymmetric cascade of sparse hyperplane classifiers,” in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '06), pp. 837–844, August 2006.
[230]  C. I. Henschke, D. F. Yankelevitz, I. Mateescu, D. W. Brettle, T. G. Rainey, and F. S. Weingard, “Neural networks for the analysis of small pulmonary nodules,” Clinical Imaging, vol. 21, no. 6, pp. 390–399, 1997.
[231]  M. F. McNitt-Gray, E. M. Hart, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, “A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results,” Medical Physics, vol. 26, no. 6, pp. 880–888, 1999.
[232]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Computerized analysis of 3-D pulmonary nodule images in surrounding and internal structure feature spaces,” in Proceedings of IEEE International Conference on Image Processing (ICIP '01), vol. 2, pp. 889–892, October 2001.
[233]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Searching similar images for classification of pulmonary nodules in threedimensional CT images,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '02), pp. 189–193, 2002.
[234]  Y. Matsuki, K. Nakamura, H. Watanabe et al., “Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis,” American Journal of Roentgenology, vol. 178, no. 3, pp. 657–663, 2002.
[235]  S. C. B. Lo, L. Y. Hsu, M. T. Freedman, Y. M. F. Lure, and H. Zhao, “Classification of lung nodules in diagnostic CT: an approach based on 3-D vascular features, nodule density distributions, and shape features,” in Medical Imaging: Image Processing, vol. 5032 of Proceedings of SPIE, pp. 183–189, February 2003.
[236]  M. Aoyama, Q. Li, S. Katsuragawa, F. Li, S. Sone, and K. Doi, “Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images,” Medical Physics, vol. 30, no. 3, pp. 387–394, 2003.
[237]  K. Nakamura, M. Yoshida, R. Engelmann et al., “Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks,” Radiology, vol. 214, no. 3, pp. 823–830, 2000.
[238]  S. Iwano, T. Nakamura, Y. Kamioka, and T. Ishigaki, “Computer-aided diagnosis: a shape classification of pulmonary nodules imaged by high-resolution CT,” Computerized Medical Imaging and Graphics, vol. 29, no. 7, pp. 565–570, 2005.
[239]  S. K. Shah, M. F. McNitt-Gray, S. R. Rogers et al., “Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features,” Academic Radiology, vol. 12, no. 10, pp. 1310–1319, 2005.
[240]  S. Matsuoka, Y. Kurihara, K. Yagihashi, H. Niimi, and Y. Nakajima, “Peripheral solitary pulmonary nodule: CT findings in patients with pulmonary emphysema,” Radiology, vol. 235, no. 1, pp. 266–273, 2005.
[241]  K. Mori, N. Niki, T. Kondo et al., “Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography,” Journal of Computer Assisted Tomography, vol. 29, no. 2, pp. 215–222, 2005.
[242]  S. Iwano, T. Nakamura, Y. Kamioka, M. Ikeda, and T. Ishigaki, “Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT,” Computerized Medical Imaging and Graphics, vol. 32, no. 5, pp. 416–422, 2008.
[243]  T. W. Way, B. Sahiner, H. P. Chan et al., “Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features,” Medical Physics, vol. 36, no. 7, pp. 3086–3098, 2009.
[244]  H. Chen, Y. Xu, Y. Ma, and B. Ma, “Neural network ensemble-based computer-aided diagnosis for differentiation of lung nodules on CT images: clinical evaluation,” Academic Radiology, vol. 17, no. 5, pp. 595–602, 2010.
[245]  M. C. Lee, L. Boroczky, K. Sungur-Stasik et al., “Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction,” Artificial Intelligence in Medicine, vol. 50, no. 1, pp. 43–53, 2010.
[246]  A. El-Baz, G. Gimel’farb, R. Falk, M. Abo El-Ghar, and J. Suri, “Appearance analysis for the early assessment of detected lung nodules,” in Lung Imaging and Computer Aided Diagnosis, A. El-Baz and J. Suri, Eds., chapter 17, pp. 395–404, Taylor & Francis, 2011.
[247]  A. El-Baz, M. Nitzken, F. Khalifa et al., “3D shape analysis for early diagnosis of malignant lung nodules,” in Proceedings of the Information Processing in Medical Imaging (IPMI '11), pp. 772–783, Monastery, Irsee, Germany, July 2011.
[248]  M. C. Lee, R. Wiemker, L. Boroczky et al., “Impact of segmentation uncertainties on computer-aided diagnosis of pulmonary nodules,” International Journal of Computer Assisted Radiology and Surgery, vol. 3, no. 6, pp. 551–558, 2008.
[249]  C. I. Henschke, D. I. McCauley, D. F. Yankelevitz et al., “Early lung cancer action project: overall design and findings from baseline screening,” The Lancet, vol. 354, no. 9173, pp. 99–105, 1999.
[250]  C. I. Henschke, D. F. Yankelevitz, R. Mirtcheva, G. McGuinness, D. McCauley, and O. S. Miettinen, “CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules,” American Journal of Roentgenology, vol. 178, no. 5, pp. 1053–1057, 2002.
[251]  M. C. B. Godoy and D. P. Naidich, “Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management,” Radiology, vol. 253, no. 3, pp. 606–622, 2009.
[252]  J. H. Min, H. Y. Lee, K. S. Lee et al., “Stepwise evolution from a focal pure pulmonary ground-glass opacity nodule into an invasive lung adenocarcinoma: an observation for more than 10 years,” Lung Cancer, vol. 69, no. 1, pp. 123–126, 2010.
[253]  B. Van Ginneken, B. M. Ter Haar Romeny, and M. A. Viergever, “Computer-aided diagnosis in chest radiography: a survey,” IEEE Transactions on Medical Imaging, vol. 20, no. 12, pp. 1228–1241, 2001.
[254]  E. Wei, J. Yan, M. Xu, and J. W. Zhang, “A novel segmentation algorithm for pulmonary nodule in chest radiograph,” in Proceedings of the IARP International Conference Pattern Recognition (ICPR '08), pp. 1–4, 2008.
[255]  A. El-Baz, G. Gimel’farb, R. Falk, and M. Abo El-Ghar, “3D MGRF-based appearance modeling for robust segmentation of pulmonary nodules in 3D LDCT chest images,” in Lung Imaging and Computer Aided Diagnosis, A. El-Baz and J. Suri, Eds., chapter 3, pp. 51–63, Taylor & Francis, 2011.
[256]  A. C. Jirapatnakul, S. V. Fotin, A. P. Reeves, A. M. Biancardi, D. F. Yankelevitz, and C. I. Henschke, “Automated nodule location and size estimation using a multi-scale Laplacian of Gaussian filtering approach,” in Proceedings of the 29th IEEE Annual International Conference of Medicine and Biology Society (EMBS '09), pp. 1028–1031, 2009.
[257]  S. Diciotti, S. Lombardo, G. Coppini, L. Grassi, M. Falchini, and M. Mascalchi, “The LOG characteristic scale: a consistent measurement of lung nodule size in CT imaging,” IEEE Transactions on Medical Imaging, vol. 29, no. 2, pp. 397–409, 2010.
[258]  M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.
[259]  V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,” International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997.
[260]  L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” International Journal of Computer Vision, vol. 50, no. 3, pp. 271–293, 2002.
[261]  A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using dynamic programming for solving variational problems in vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 9, pp. 855–867, 1990.
[262]  D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic programming for detecting, tracking, and matching deformable contours,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 3, pp. 294–302, 1995.
[263]  D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.
[264]  J. Lin, “Divergence measures based on the Shannon entropy,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 145–151, 1991.
[265]  T. Lindeberg, “Feature detection with automatic scale selection,” International Journal of Computer Vision, vol. 30, no. 2, pp. 79–116, 1998.
[266]  L. Breiman, J. Fiedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, Chapman and Hall/CRC, 1984.
[267]  Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.
[268]  D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes, “Non-rigid registration using free-form deformations: application to breast MR images,” IEEE Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999.
[269]  H. A. Gietema, C. M. Schaefer-Prokop, W. P. T. M. Mali, G. Groenewegen, and M. Prokop, “Pulmonary nodules: interscan variability of semiautomated volume measurements with multisection CT - Influence of inspiration level, nodule size, and segmentation performance,” Radiology, vol. 245, no. 3, pp. 889–894, 2007.
[270]  M. F. Rinaldi, T. Bartalena, L. Braccaioli et al., “Three-dimensional analysis of pulmonary nodules: variability of semiautomated volume measurements between different versions of the same software,” Radiologia Medica, vol. 115, no. 3, pp. 403–412, 2010.
[271]  P. A. Hein, V. C. Romano, P. Rogalla et al., “Variability of semiautomated lung nodule volumetry on ultralow-dose ct: comparison with nodule volumetry on standard-dose CT,” Journal of Digital Imaging, vol. 23, no. 1, pp. 8–17, 2010.
[272]  H. Ashraf, B. de Hoop, S. B. Shaker et al., “Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably,” European Radiology, vol. 20, no. 8, pp. 1878–1885, 2010.
[273]  C. M. Park, J. M. Goo, H. J. Lee, K. G. Kim, M. J. Kang, and Y. H. Shin, “Persistent pure ground-glass nodules in the lung: interscan variability of semiautomated volume and attenuation measurements,” American Journal of Roentgenology, vol. 195, no. 6, pp. W408–W414, 2010.
[274]  B. de Hoop, H. Gietema, B. van Ginneken, P. Zanen, G. Groenewegen, and M. Prokop, “A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations,” European Radiology, vol. 19, no. 4, pp. 800–808, 2009.
[275]  J. Van de Steene, N. Linthout, J. De Mey et al., “Definition of gross tumor volume in lung cancer: inter-observer variability,” Radiotherapy and Oncology, vol. 62, no. 1, pp. 37–39, 2002.
[276]  A. C. Paulino and P. A. Johnstone, “FDG-PET in radiotherapy treatment planning: pandora's box?” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 1, pp. 4–5, 2004.
[277]  P. Giraud, D. Grahek, F. Montravers et al., “CT and 18F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers,” International Journal of Radiation Oncology Biology Physics, vol. 49, no. 5, pp. 1249–1257, 2001.
[278]  U. Nestle, S. Kremp, A. Schaefer-Schuler et al., “Comparison of different methods for delineation of18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer,” Journal of Nuclear Medicine, vol. 46, no. 8, pp. 1342–1348, 2005.
[279]  Q. C. Black, I. S. Grills, L. L. Kestin et al., “Defining a radiotherapy target with positron emission tomography,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 4, pp. 1272–1282, 2004.
[280]  J. B. Davis, B. Reiner, M. Huser, C. Burger, G. Székely, and I. F. Ciernik, “Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning,” Radiotherapy and Oncology, vol. 80, no. 1, pp. 43–50, 2006.
[281]  J. F. Daisne, M. Sibomana, A. Bol, T. Doumont, M. Lonneux, and V. Grégoire, “Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms,” Radiotherapy and Oncology, vol. 69, no. 3, pp. 247–250, 2003.
[282]  J. A. Van Dalen, A. L. Hoffmann, V. Dicken et al., “A novel iterative method for lesion delineation and volumetric quantification with FDG PET,” Nuclear Medicine Communications, vol. 28, no. 6, pp. 485–493, 2007.
[283]  S. A. Nehmeh, H. El-Zeftawy, C. Greco et al., “An iterative technique to segment PET lesions using a Monte Carlo based mathematical model,” Medical Physics, vol. 36, no. 10, pp. 4803–4809, 2009.
[284]  C. B. Caldwell, K. Mah, M. Skinner, and C. E. Danjoux, “Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET,” International Journal of Radiation Oncology Biology Physics, vol. 55, no. 5, pp. 1381–1393, 2003.
[285]  K. J. Biehl, F. M. Kong, F. Dehdashti et al., “18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?” Journal of Nuclear Medicine, vol. 47, no. 11, pp. 1808–1812, 2006.
[286]  D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image segmentation,” Annual Review of Biomedical Engineering, vol. 2, no. 2000, pp. 315–337, 2000.
[287]  J. C. Bezdek, L. O. Hall, M. C. Clark, D. B. Goldgof, and L. P. Clarke, “Medical image analysis with fuzzy models,” Statistical Methods in Medical Research, vol. 6, no. 3, pp. 191–214, 1997.
[288]  C. J. White and J. M. Brady, “A semi-automatic approach to the delineation of tumour boundaries from PET data using level sets,” in Proceedings of the Society of Nuclear Medicine Annual Meeting, 2005.
[289]  P. Tylski, G. Bonniaud, E. Decencière et al., “18F-FDG PET images segmentation using morphological watershed: a phantom study,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, vol. 4, pp. 2063–2067, November 2006.
[290]  W. Zhu and T. Jiang, “Automation segmentation of PET image for brain tumors,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record—Nuclear Science Symposium, Medical Imaging Conference, vol. 4, pp. 2627–2629, October 2003.
[291]  D. W. G. Montgomery, A. Amira, and H. Zaidi, “Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model,” Medical Physics, vol. 34, no. 2, pp. 722–736, 2007.
[292]  O. Demirkaya, “Lesion segmentation in wholebody images of PET,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record—Nuclear Science Symposium, Medical Imaging Conference, vol. 4, pp. 2873–2876, October 2003.
[293]  X. Geets, J. A. Lee, A. Bol, M. Lonneux, and V. Grégoire, “A gradientbased method for segmenting FDG-PET images: methodology and validation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 9, pp. 1427–1438, 2007.
[294]  H. Li, W. L. Thorstad, K. J. Biehl et al., “A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours,” Medical Physics, vol. 35, no. 8, pp. 3711–3721, 2008.
[295]  H. Yu, C. Caldwell, K. Mah, and D. Mozeg, “Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning,” IEEE Transactions on Medical Imaging, vol. 28, no. 3, pp. 374–383, 2009.
[296]  S. S. Mohamed, A. M. Youssef, E. F. El-Saadany, and M. M. A. Salama, “Artificial life feature selection techniques for prostrate cancer diagnosis using TRUS images,” in Proceedings of the of 2nd International Conference on Image Analysis and Recognition, pp. 903–913, 2005.
[297]  B. J. Woods, B. D. Clymer, T. Kurc et al., “Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data,” Journal of Magnetic Resonance Imaging, vol. 25, no. 3, pp. 495–501, 2007.
[298]  R. J. H. M. Steenbakkers, J. C. Duppen, I. Fitton et al., “Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis,” International Journal of Radiation Oncology Biology Physics, vol. 64, no. 2, pp. 435–448, 2006.
[299]  J. L. Fox, R. Rengan, W. O'Meara et al., “Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer?” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 1, pp. 70–75, 2005.
[300]  D. De Ruysscher, S. Wanders, E. Van Haren et al., “Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 4, pp. 988–994, 2005.
[301]  A. P. Reeves, A. M. Biancardi, T. V. Apanasovich et al., “The lung image database consortium (LIDC). A comparison of different size metrics for pulmonary nodule measurements,” Academic Radiology, vol. 14, no. 12, pp. 1475–1485, 2007.
[302]  H. Bolte, T. Jahnke, F. K. W. Sch?fer et al., “Interobserver-variability of lung nodule volumetry considering different segmentation algorithms and observer training levels,” European Journal of Radiology, vol. 64, no. 2, pp. 285–295, 2007.
[303]  M. Das, J. Ley-Zaporozhan, H. A. Gietema et al., “Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners,” European Radiology, vol. 17, no. 8, pp. 1979–1984, 2007.
[304]  J. G. Ravenel, W. M. Leue, P. J. Nietert, J. V. Miller, K. K. Taylor, and G. A. Silvestri, “Pulmonary nodule volume: effects of reconstruction parameters on automated measurements—a phantom study,” Radiology, vol. 247, no. 2, pp. 400–408, 2008.
[305]  A. El-Baz, P. Sethu, G. Gimel'farb et al., “A new validation approach for the growth rate measurement using elastic phantoms generated by state-of-the-art microfluidics technology,” in Proceedings of the 17th IEEE International Conference on Image Processing (ICIP '10), pp. 4381–4384, Hong Kong, China, September 2010.
[306]  A. El-Baz, P. Sethu, G. Gimel’farb et al., “Validation of a new imaged-based approach for the accurate estimating of the growth rate of detected lung nodules using real computed tomography images and elastic phantoms generated by state-of-the-art microfluidics technology,” in Lung Imaging and Computer Aided Diagnosis, A. El-Baz and J. Suri, Eds., chapter 18, pp. 405–420, Taylor & Francis, 2011.
[307]  A. El-Baz, P. Sethu, G. Gimel'farb et al., “Elastic phantoms generated by microfluidics technology: validation of an imaged-based approach for accurate measurement of the growth rate of lung nodules,” Biotechnology Journal, vol. 6, no. 2, pp. 195–203, 2011.
[308]  Cornell University Vision and Image Analysis Group, “Elcap public lung image database,” http://www.via.cornell.edu/lungdb.html, 2003.
[309]  M. McNitt-Gray, S. A. Armato III, C. Meyer, et al., “The lung image database consortium (LIDC) data collection process for nodule detection and annotation,” Academic Radiology, vol. 14, no. 12, pp. 1464–1474.
[310]  National Cancer Institute, “Lidc datasets,” http://imaging.cancer.gov/programsandresources/informationsystems/lidc, 2005.
[311]  G. Picozzi, E. Paci, A. Lopes Pegna et al., “Screening of lung cancer with low dose spiral CT: results of a three year pilot study and design of the randomised controlled trial "Italung-CT",” Radiologia Medica, vol. 109, no. 1-2, pp. 17–26, 2005.
[312]  A. Lopes Pegna, G. Picozzi, M. Mascalchi et al., “Design, recruitment and baseline results of the ITALUNG trial for lung cancer screening with low-dose CT,” Lung Cancer, vol. 64, no. 1, pp. 34–40, 2009.
[313]  C. E. Metz, “ROC methodology in radiologic imaging,” Investigative Radiology, vol. 21, no. 9, pp. 720–733, 1986.
[314]  J. A. Hanley and B. J. McNeil, “A method of comparing the areas under receiver operating characteristic curves derived from the same cases,” Radiology, vol. 148, no. 3, pp. 839–843, 1983.
[315]  D. M. Libby, J. P. Smith, N. K. Altorki, M. W. Pasmantier, D. Yankelevitz, and C. I. Henschke, “Managing the small pulmonary nodule discovered by CT,” Chest, vol. 125, no. 4, pp. 1522–1529, 2004.
[316]  A. P. Reeves, “Measurement methods for small pulmonary nodules,” Radiology, vol. 246, no. 1, pp. 333–334, 2008.
[317]  M. Hasegawa, S. Sone, S. Takashima et al., “Growth rate of small lung cancers detected on mass CT screening,” British Journal of Radiology, vol. 73, no. 876, pp. 1252–1259, 2000.
[318]  D. O. Wilson, A. Ryan, C. Fuhrman et al., “Doubling times and CT screendetected lung cancers in the pittsburgh lung screening study,” American Journal of Respiratory and Critical Care Medicine, vol. 185, no. 1, pp. 85–89, 2012.
[319]  N. A. Dewan, N. C. Gupta, L. S. Redepenning, J. J. Phalen, and M. P. Frick, “Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules: potential role in evaluation and management,” Chest, vol. 104, no. 4, pp. 997–1002, 1993.
[320]  N. C. Gupta, J. Maloof, and E. Gunel, “Probability of Malignancy in Solitary Pulmonary Nodules Using Fluorine-18-FDG and PET,” Journal of Nuclear Medicine, vol. 37, no. 6, pp. 943–948, 1996.
[321]  V. J. Lowe, J. W. Fletcher, L. Gobar et al., “Prospective investigation of positron emission tomography in lung nodules,” Journal of Clinical Oncology, vol. 16, no. 3, pp. 1075–1084, 1998.
[322]  J. Lee, J. M. Aronchick, and A. Alavi, “Accuracy of F-18 fluorodeoxyglucose positron emission tomography for the evaluation of malignancy in patients presenting with new lung abnormalities: a retrospective review,” Chest, vol. 120, no. 6, pp. 1791–1797, 2001.
[323]  G. J. Herder, R. P. Golding, O. S. Hoekstra et al., “The performance of 18F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 9, pp. 1231–1236, 2004.
[324]  A. Halley, A. Hugentobler, P. Icard et al., “Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 9, pp. 1026–1032, 2005.
[325]  Z. Keidar, N. Haim, L. Guralnik et al., “PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management,” Journal of Nuclear Medicine, vol. 45, no. 10, pp. 1640–1646, 2004.
[326]  C. A. Yi, S. L. Kyung, B. T. Kim et al., “Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT,” Journal of Nuclear Medicine, vol. 47, no. 3, pp. 443–450, 2006.
[327]  Y. Nie, Q. Li, F. Li, Y. Pu, D. Appelbaum, and K. Doi, “Integrating PET and CT information to improve diagnostic accuracy for lung nodules: a semiautomatic computer-aided method,” Journal of Nuclear Medicine, vol. 47, no. 7, pp. 1075–1080, 2006.
[328]  Y. Nakamoto, M. Senda, T. Okada et al., “Software-based fusion of PET and CT images for suspected recurrent lung cancer,” Molecular Imaging and Biology, vol. 10, no. 3, pp. 147–153, 2008.
[329]  P. Tao, F. Griess, Y. Lvov et al., “Characterization of small nodules by automatic segmentation of X-ray computed tomography images,” Journal of Computer Assisted Tomography, vol. 28, no. 3, pp. 372–377, 2004.
[330]  M. Petrou, L. E. Quint, B. Nan, and L. H. Baker, “Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology,” American Journal of Roentgenology, vol. 188, no. 2, pp. 306–312, 2007.
[331]  D. T. Boll, R. C. Gilkeson, T. R. Fleiter, K. A. Blackham, J. L. Duerk, and J. S. Lewin, “Volumetric assessment of pulmonary nodules with ECG-gated MDCT,” American Journal of Roentgenology, vol. 183, no. 5, pp. 1217–1223, 2004.
[332]  O. Honda, H. Sumikawa, T. Johkoh et al., “Computer-assisted lung nodule volumetry from multi-detector row CT: influence of image reconstruction parameters,” European Journal of Radiology, vol. 62, no. 1, pp. 106–113, 2007.
[333]  S. Sone, K. Tsushima, K. Yoshida, K. Hamanaka, T. Hanaoka, and R. Kondo, “Pulmonary Nodules. Preliminary Experience with Semiautomated Volumetric Evaluation by CT Stratum,” Academic Radiology, vol. 17, no. 7, pp. 900–911, 2010.
[334]  S. Toshioka, K. Kanazawa, N. Niki et al., “Computer aided diagnosis system for lung cancer based on helical CT images,” in Medical Imaging: Image Processing, vol. 3034 of Proceedings of SPIE, pp. 975–984, February 1997.
[335]  Y. Kawata, N. Niki, H. Ohmatsu, K. Eguchi, and N. Moriyama, “Shape analysis of pulmonary nodules based on thin section CT images,” in Medical Imaging: Image Processing, vol. 3034 of Proceedings of SPIE, pp. 964–974, February 1997.
[336]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Tracking interval changes of pulmonary nodules using a sequence of three-dimensional thoracic images,” in Medical Imaging: Image Processing, vol. 3979, February 2000.
[337]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Analysis of evolving processes in pulmonary nodules using a sequence of three-dimensional thoracic images,” in Medical Imaging: Image Processing, vol. 4322, pp. 1890–1901, February 2001.
[338]  J. Hsieh and K. Karau, “Theoretical prediction of lung nodule measurement accuracy under different acquisition and reconstruction conditions,” in Medical Imaging: Physiology, Function, and Structure from Medical Images, vol. 5369 of Proceedings of SPIE, pp. 406–412, February 2004.
[339]  A. El-Baz, G. Gimel’farb, R. Falk et al., “Toward early diagnosis of lung cancer,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '09), pp. 682–689, London, UK, September 2009.
[340]  A. El-Baz, G. Gimel'farb, R. Falk, D. Heredia, and M. Abo El-Ghar, “A novel approach for accurate estimation of the growth rate of the detected lung nodules,” in Proceedings of the 1st International Workshop on Pulmonary Image Analysis, pp. 33–42, New York, NY, USA, September 2008.
[341]  A. El-Baz, G. Gimel'farb, R. Falk, and M. Abou El-Ghar, “A new approach for automatic analysis of 3D low dose CT images for accurate monitoring the detected lung nodules,” in Proceedings of IARP International Conference on Pattern Recognition (ICPR '08), pp. 1–4, Tampa, Fla, USA, December 2008.
[342]  A. El-Baz, G. Gimel’farb, R. Falk, M. Abou El-Ghar, and H. Refaie, “Promising results for early diagnosis of lung cancer,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '08), pp. 1151–1154, Paris, France, May 2008.
[343]  A. El-Baz, G. Gimel’farb, R. Falk, and M. Abou El-Ghar, “A novel approach for automatic follow-up of detected lung nodules,” in Proceedings of IEEE International Conference Image Processing (ICIP '07), vol. 5, pp. 501–504, San Antonio, Tex, USA, September 2007.
[344]  A. El-Baz, G. Gimelfarb, R. Falk, and M. Abou El-Ghar, “A new CAD system for early diagnosis of detected lung nodules,” in Proceedings of IEEE International Conference Image Processing (ICIP '07), vol. 2, pp. 461–464, San Antonio, Tex, USA, September 2007.
[345]  A. El-Baz, S. Yuksel, S. Elshazly, and A. Farag, “Non-rigid registration techniques for automatic follow-up of lung nodules,” in Proceedings of the Computer Assisted Radiology and Surgery (CARS '05), pp. 1115–1120, Berlin, Germany, June 2005.
[346]  A. El-Baz, F. Khalifa, A. Elnakib et al., “A novel approach for global lung registration using 3D Markov Gibbs appearance model,” in Proceedings of the International Conference Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '12), pp. 114–121, Nice, France, October 2012.
[347]  K. Furuya, S. Murayama, H. Soeda et al., “New classification of small pulmonary nodules by margin characteristics on high-resolution CT,” Acta Radiologica, vol. 40, no. 5, pp. 496–504, 1999.
[348]  Y. Kawata, N. Niki, H. Ohmatsu et al., “Curvature based analysis of pulmonary nodules using thin-section CT images,” in Proceedings of the IARP International Conference on Pattern Recognition (ICPR '98), vol. 1, pp. 361–363, 1998.
[349]  S. Kido, K. Kuriyama, M. Higashiyama, T. Kasugai, and C. Kuroda, “Fractal analysis of small peripheral pulmonary nodules in thin-section CT evaluation of the lung-nodule interfaces,” Journal of Computer Assisted Tomography, vol. 26, no. 4, pp. 573–578, 2002.
[350]  S. K. Shah, M. F. McNitt-Gray, S. R. Rogers et al., “Computer-aided diagnosis of the solitary pulmonary nodule,” Academic Radiology, vol. 12, no. 5, pp. 570–575, 2005.
[351]  J. W. Gurney and S. J. Swensen, “Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis,” Radiology, vol. 196, no. 3, pp. 823–829, 1995.
[352]  A. El-Baz, G. Gimel’farb, M. Abou El-Ghar, and R. Falk, “Appearancebased diagnostic system for early assessment of malignant lung nodules,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '12), pp. 533–536, Orlando, Fla, USA, September-October 2012.
[353]  A. El-Baz, G. Gimel’farb, R. Falk, and M. Abo El-Ghar, “Appearance analysis for diagnosing malignant lung nodules,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '10), pp. 193–196, Rotterdam, The Netherlands, April 2010.
[354]  A. El-Baz, G. Gimel’farb, M. Abo El-Ghar, and R. Falk, “Early assessment of malignant lung nodules,” in Proceedings of the of International Symposium on Biomedical Imaging (ISBI '12), pp. 1463–1466, Barcelona, Spain, May 2012.
[355]  A. El-Baz, M. Nitzken, G. Gimel’farb et al., “Three-dimensional shape analysis using spherical harmonics for early assessment of detected lung nodules,” in Lung Imaging and Computer Aided Diagnosis, A. El-Baz and J. Suri, Eds., chapter 19, pp. 421–438, Taylor & Francis, 2011.
[356]  M. Kondapaneni, M. Nitzken, E. Bogaert et al., “A novel shape-based diagnostic approach for early diagnosis of lung nodules,” Chest, vol. 140, no. 46, article 55A, 2011.
[357]  A. El-Baz, M. Nitzken, E. Vanbogaert, G. Gimel'farb, R. Falk, and M. Abo El-Ghar, “A novel shape-based diagnostic approach for early diagnosis of lung nodules,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI '11), pp. 137–140, Chicago, Ill, USA, March-April 2011.
[358]  A. El-Baz, M. Nitzken, F. Khalifa et al., “3D shape analysis for early diagnosis of malignant lung nodules,” in Proceedings of the International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI '11), pp. 587–594, Toronto, Canada, September 2011.
[359]  J. J. Erasmus, H. P. McAdams, and J. E. Connolly, “Solitary pulmonary nodules: part II. Evaluation of the indeterminate nodule,” Radiographics, vol. 20, no. 1, pp. 59–66, 2000.
[360]  J. M. Goo, J. G. Im, K. H. Do et al., “Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases,” Radiology, vol. 216, no. 1, pp. 117–121, 2000.
[361]  D. Lardinois, W. Weder, T. F. Hany et al., “Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography,” The New England Journal of Medicine, vol. 348, no. 25, pp. 2500–2507, 2003.
[362]  J. J. Erasmus, H. P. McAdams, E. F. Patz, R. E. Coleman, V. Ahuja, and P. C. Goodman, “Evaluation of primary pulmonary carcinoid tumors using FDG PET,” American Journal of Roentgenology, vol. 170, no. 5, pp. 1369–1373, 1998.
[363]  K. Higashi, Y. Ueda, H. Seki et al., “Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma,” Journal of Nuclear Medicine, vol. 39, no. 6, pp. 1016–1020, 1998.
[364]  J. T. Annema, O. S. Hoekstra, E. F. Smit, M. Veseli?, M. I. M. Versteegh, and K. F. Rabe, “Towards a minimally invasive staging strategy in NSCLC: analysis of PET positive mediastinal lesions by EUS-FNA,” Lung Cancer, vol. 44, no. 1, pp. 53–60, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413