全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Application of Nanocrystalline-Cellulose-Supported Acid Ionic Liquid Catalyst in Pechmann Reaction

DOI: 10.1155/2013/452580

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanocrystalline-cellulose-supported acidic ionic liquid carrying SO3H functional group was prepared using nanocrystalline cellulose, imidazole and 1,4-butane sultone as the source chemicals. The prepared nanocrystalline-cellulose-supported ionic liquid catalyst was characterized by AFM and SEM and its catalytic activity in the reaction of resorcinol with ethyl acetoacetate was tested in a solvent-free condition. The effects of reaction time, reaction temperature, and the ratio of catalyst on the conversion of resorcinol were investigated. A variety of coumarin derivatives were obtained in good yield in the absence of solvent. 1. Introduction Coumarins are very significant heterocyclic compounds in organic synthesis. These compounds are known as benzo-2-pyrone derivatives which are principally found in plants. Most of coumarin derivatives show some useful bioactivities. These compounds are widely used for pharmaceutical and agricultural applications and fragrance [1]. The Pechmann reaction is one of the most valuable methods for synthesis of coumarin which starts by phenols and acidic catalysts like concentrated sulfuric acid and Bronsted acidic ionic liquid [2]. Moreover, some other harsh catalysts used in the Pechmann reaction are InCl3, ZrCl4, Yb(OTF)3, and p-TSOH [3]. These methods have some disadvantages such as by-products formation, long reaction time, and corrosion problems. So, there have been some attempts to find optional and safe synthetic routes [4]. However, most of these methods also suffer from problematic conditions such as expensive reagent, durable workup, large amount of support, or a catalyst which makes large amount of toxic waste. Therefore, with considering these problems, we tried to introduce a new ecofriendly catalyst to promote the Pechmann reaction. Obviously, heterogeneous catalysts such as solid phase supported catalysts are particularly attractive for synthesis of chemical compounds because they allow simple separation of catalyst from the reaction mixture and prevent the release of toxic material to the environment. In recent years science of catalysts is shifting to reusable resources and ecofriendly processes. Thus, biodegradable and biocompatible polymers are appropriate alternatives in serving on the catalytic field [5, 6]. Among the biopolymers, cellulose and its derivatives are extensively used in chemicals and bioapplications. They are also applied as support for synthesis of organic compounds because cellulose and its derivatives are biodegradable, environmentally safe, widely abundant in nature, and easy to

References

[1]  M. A. Musa, A. Zhou, and O. A. Sadik, “Synthesis and antiproliferative activity of new coumarin-based benzopyranone derivatives against human tumor cell lines,” Medicinal Chemistry, vol. 7, no. 2, pp. 112–120, 2011.
[2]  E. C. Horning, Organic Synthesis, John Wiley & Sons, New York, NY, USA, 1955.
[3]  P. G. Mandhane, R. S. Joshi, A. R. Ghawalkar, G. R. Jadhav, and C. H. Gill, “Ammonium metavanadate: a mild and efficient catalyst for the synthesis of coumarins,” Bulletin of the Korean Chemical Society, vol. 30, no. 12, pp. 2969–2972, 2009.
[4]  M. C. Laufer, H. Hausmann, and W. F. H?lderich, “Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts,” Journal of Catalysis, vol. 218, no. 2, pp. 315–320, 2003.
[5]  K. R. Reddy, N. S. Kumar, and B. Sreedhar, “N-Arylation of nitrogen heterocycles with aryl halides and arylboronic acids catalyzed by cellulose supported copper(0),” Journal of Molecular Catalysis A, vol. 252, no. 1-2, pp. 136–141, 2006.
[6]  E. Guibal, “Heterogeneous catalysis on chitosan-based materials: a review,” Progress in Polymer Science, vol. 30, no. 1, pp. 71–109, 2005.
[7]  R. M. Matos, J. Y. Cavaillé, A. Dufresne, J. F. Gérard, and C. Graillat, “Processing and characterization of new thermoset nanocomposites based on cellulose whiskers,” Composite Interfaces, vol. 7, no. 2, pp. 117–131, 2000.
[8]  K. Fleming, D. G. Gray, and S. Matthews, “Cellulose crystallites,” Chemistry A, vol. 7, no. 9, pp. 1831–1836, 2001.
[9]  J.-F. Revol, L. Godbout, and D. G. Gray, “Solid self-assembled films of cellulose with chiral nematic order and optically variable properties,” Journal of Pulp and Paper Science, vol. 24, no. 5, pp. 146–149, 1998.
[10]  S. Hill, “Cars that grow on trees,” New Scientists, vol. 153, no. 2067, pp. 36–39, 1997.
[11]  X. M. Dong, J.-F. Revol, and D. G. Gray, “Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose,” Cellulose, vol. 5, no. 1, pp. 19–32, 1998.
[12]  J. Fraga-Dubreuil, K. Bourahla, M. Rahmouni, J. P. Bazureau, and J. Hamelin, “Catalysed esterifications in room temperature ionic liquids with acidic counteranion as recyclable reaction media,” Catalysis Communications, vol. 3, no. 5, pp. 185–190, 2002.
[13]  J. Gui, X. Cong, D. Liu, X. Zhang, and Z. Hu, “Novel Br?nsted acidic ionic liquid as efficient and reusable catalyst system for esterification,” Catalysis Communications, vol. 5, no. 9, pp. 473–477, 2004.
[14]  S. B. Patil, R. P. Bhat, V. P. Raje, and S. D. Samant, “Ultrasound-assisted Pechmann condensation of phenols with β-ketoesters to form coumarins, in the presence of bismuth(III) chloride catalyst,” Synthetic Communications, vol. 36, no. 4, pp. 525–531, 2006.
[15]  L. L. Woods and J. Sapp, “A new one-step synthesis of substituted coumarins,” The Journal of Organic Chemistry, vol. 27, no. 10, pp. 3703–3705, 1962.
[16]  A. Russel and J. R. Frye, “2,6-Dihydroxyacetophenone,” Organic Syntheses, vol. 21, p. 22, 1941.
[17]  R. L. Atkins and D. E. Bliss, “Substituted coumarins and azacoumarins. Synthesis and fluorescent properties,” The Journal of Organic Chemistry, vol. 43, no. 10, pp. 1975–1980, 1978.
[18]  A. S. R. Anjaneyulu, L. R. Row, C. S. Krishna, and C. Srinivasulu, “Synthesis of benzochromenes and related compounds,” Current Science, vol. 37, p. 513, 1968.
[19]  R. Bodirlau and C. A. Teaca, “Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides,” Romanian Journal of Physics, vol. 54, no. 1-2, pp. 93–104, 2009.
[20]  C. Qi and Z. Dehe, “Grafting of humic acid onto cotton cellulose (II),” Chinese Journal of Polymer Science, vol. 6, no. 2, p. 165, 1988.
[21]  B. J. Donnelly, D. M. Donnelly, and A. M. O. Sullivan, “Dalbergia species—VI : the occurrence of melannein in the genus dalbergia,” Tetrahedron, vol. 24, no. 6, pp. 2617–2622, 1968.
[22]  J. R. Johnson, “Other classical coumarins syntheses include the Perkin,” Organic Reactions, vol. 1, pp. 210–285, 1942.
[23]  Y. Gu, J. Zhang, Z. Duan, and Y. Denga, “Pechmann reaction in non-chloroaluminate acidic ionic liquids under solvent-free conditions,” Advanced Synthesis & Catalysis, vol. 347, no. 4, pp. 512–516, 2005.
[24]  F. Bigi, L. C. hesini, R. Maggi, and G. Sartori, “Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids,” The Journal of Organic Chemistry, vol. 64, no. 3, pp. 1033–1035, 1999.
[25]  R. L. Shriner, “Reformatsky Reaction,” Organic Reactions, vol. 1, p. 15, 1942.
[26]  N. S. Narasimhan, R. S. Mali, and M. V. Barve, “Synthetic application of lithiation peactions; part XIII. Synthesis of 3-phenylcoumarins and their benzo derivatives,” Synthesis, vol. 1979, no. 11, pp. 906–909, 1979.
[27]  I. Yavari, R. Hekmat-Shoar, and A. Zonousi, “A new and efficient route to 4-carboxymethylcoumarins mediated by vinyltriphenylphosphonium salt,” Tetrahedron Letters, vol. 39, no. 16, pp. 2391–2392, 1998.
[28]  N. Cairns, L. M. Harwood, and D. P. Astles, “Tandem thermal Claisen-cope rearrangements of coumarate derivatives. Total syntheses of the naturally occurring coumarins: suberosin, demethylsuberosin, ostruthin, balsamiferone and gravelliferone,” Journal of the Chemical Society, Perkin Transactions, no. 21, pp. 3101–3107, 1994.
[29]  M. R. Saidi and K. Bigdeli, “Microwave promoted and improved thermal synthesis of pyranocoumarins and furocoumarins,” Journal of Chemical Research S, no. 12, pp. 800–801, 1998.
[30]  A. Sinhamahapatra, N. Sutradhar, S. Pahari, H. C. Bajaj, and A. B. Panda, “Mesoporous zirconium phosphate: an efficient catalyst for the synthesis of coumarin derivatives through Pechmann condensation reaction,” Applied Catalysis A, vol. 394, no. 1-2, pp. 93–100, 2011.
[31]  S. Frere, V. Thieary, and T. Besson, “Microwave acceleration of the Pechmann reaction on graphite/montmorillonite K10: application to the preparation of 4-substituted 7-aminocoumarins,” Tetrahedron Letters, vol. 42, no. 15, pp. 2791–2794, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133