全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development and Characterization of Semi-IPN Silver Nanocomposite Hydrogels for Antibacterial Applications

DOI: 10.1155/2013/243695

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sodium carboxymethyl cellulose/poly(acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) semi-interpenetrating polymer network (semi-IPN) hydrogels were prepared by using free radical polymerization technique. Silver nanoparticles were formed by reduction of silver nitrate in semi-IPN hydrogels with sodium borohydrate at room temperature. UV-visible spectroscopy, thermogravimetrical analysis, X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize the formation of silver nanoparticles in hydrogels. SEM images indicated clearly the formation of group of silver nanoparticles with size range of 10–20?nm. The sizes of silver nanoparticles were also supported by transmission electron microscopy results. The semi-IPN silver nanocomposite hydrogels reported here might be a potentially smart material in the range of applications of antibacterial activity. 1. Introduction Nanocomposite polymer hydrogels may be defined as crosslinked three-dimensional polymer networks swollen with water or biological fluids in the presence of nanoparticles. The design and development of such materials containing metallic nanoparticles have scientific and technological research interests in recent years due to their unique and versatile properties [1–5]. These properties lead to potential applications in the field of numerous physical, biological, biomedical, and pharmaceutical sectors [6–13] as well as optical, electrical, chemical, and data storage [14–18]. These properties are known for silver in the form of ions, colloidal particles, nanoparticles, metallic silver, and silver compounds, and many works study their use to inhibit the proliferation of microorganisms for medical [19–21], food packaging [22, 23], and water treatment [24, 25] applications. Generally silver ions, as heavy metals, lead to the inactivation of proteins reacting with thiol groups (–SH) on the membrane of bacteria causing the microbial cell death [26–28]. The biological activity of silver, especially the antibacterial property, is size dependent [29]. Thus silver nanoparticles should be small enough to pass through the cell membrane. Silver ions kill microorganisms instantly by blocking their respiratory enzyme systems, while having no negative effect on human cells. Although nanocomposites containing metal NPs have elegant features, the homogeneous dispersion of metal NPs is not easy using a simple process because of their high surface free energy, which may cause agglomeration. Therefore, preparation of such nanocomposites with

References

[1]  M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu et al., “Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity,” Macromolecules, vol. 37, no. 5, pp. 1787–1792, 2004.
[2]  S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chemistry of Materials, vol. 17, no. 1, pp. 9–12, 2005.
[3]  E. Delamarche, M. Geissler, J. Vichiconti et al., “Electroless deposition of NiB on 15 inch glass substrates for the fabrication of transistor gates for liquid crystal displays,” Langmuir, vol. 19, no. 14, pp. 5923–5935, 2003.
[4]  S. G. Boyes, B. Akgun, W. J. Brittain, and M. D. Foster, “Synthesis, characterization, and properties of polyelectrolyte block copolymer brushes prepared by atom transfer radical polymerization and their use in the synthesis of metal nanoparticles,” Macromolecules, vol. 36, no. 25, pp. 9539–9548, 2003.
[5]  S. Yoda, A. Hasegawa, H. Suda et al., “Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation,” Chemistry of Materials, vol. 16, no. 12, pp. 2363–2368, 2004.
[6]  W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998.
[7]  A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996.
[8]  W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, “Luminescent quantum dots for multiplexed biological detection and imaging,” Current Opinion in Biotechnology, vol. 13, pp. 40–46, 2002.
[9]  X. M. Wu, H. Liu, J. Liu et al., “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, vol. 21, no. 4, pp. 41–46, 2003.
[10]  I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 631–651, 2002.
[11]  F. Forestier, P. Gerrier, C. Chaumard, A. M. Quero, P. Couvreur, and C. Labarre, “Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages,” Journal of Antimicrobial Chemotherapy, vol. 30, no. 2, pp. 173–179, 1992.
[12]  I. Sondi, O. Siiman, and E. Matijevi?, “Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody?aminodextran?CdS nanoparticle conjugates,” Langmuir, vol. 16, no. 7, pp. 3107–3118, 2000.
[13]  O. Siiman, E. Matijevic, and I. Sondi, “Semi conductor nanoparticles for analysis of blood cell populations and methods of making same,” U.S. Patent 6, 235, 540 B1.
[14]  A. Biswas, O. C. Aktas, U. Schürmann et al., “Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems,” Applied Physics Letters, vol. 84, no. 14, pp. 2655–2657, 2004.
[15]  P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, Wiley-VCH, Weinheim, Germany, 2003.
[16]  Y. M. Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, “Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications,” Polymer, vol. 48, no. 1, pp. 158–164, 2007.
[17]  Y. Lu, P. Spyra, Y. Mei, M. Ballauff, and A. Pich, “Composite hydrogels: robust carriers for catalytic nanoparticles,” Macromolecular Chemistry and Physics, vol. 208, no. 3, pp. 254–261, 2007.
[18]  J. Y. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, “Programmable polymer thin film and non-volatile memory device,” Nature Materials, vol. 3, no. 12, pp. 918–922, 2004.
[19]  K. Yoshida, M. Tanagawa, S. Matsumoto, T. Yamada, and M. Atsuta, “Antibacterial activity of resin composites with silver-containing materials,” European Journal of Oral Sciences, vol. 107, no. 4, pp. 290–296, 1999.
[20]  F. Furno, K. S. Morley, B. Wong et al., “Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?” Journal of Antimicrobial Chemotherapy, vol. 54, no. 6, pp. 1019–1024, 2004.
[21]  W. F. Lee and K. T. Tsao, “Preparation and properties of nanocomposite hydrogels containing silver nanoparticles by EX situ polymerization,” Journal of Applied Polymer Science, vol. 100, no. 5, pp. 3653–3661, 2006.
[22]  S. Quintavalla and L. Vicini, “Antimicrobial food packaging in meat industry,” Meat Science, vol. 62, no. 3, pp. 373–380, 2002.
[23]  R. Tankhiwale and S. K. Bajpai, “Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material,” Colloids and Surfaces B, vol. 69, no. 2, pp. 164–168, 2009.
[24]  R. Bandyopadhyaya, M. V. Sivaiah, and P. A. Shankar, “Silver-embedded granular activated carbon as an antibacterial medium for water purification,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 8, pp. 1177–1180, 2008.
[25]  C. Maioli, A. Bestetti, A. Mauri, C. Pozzato, and R. Paroni, “Removal of radioisotopes in solution and bactericidal/bacteriostatic sterilising power in activated carbon and metal silver filters,” Environmental Toxicology and Pharmacology, vol. 27, no. 1, pp. 49–53, 2009.
[26]  A. L. Lehninger, D. L. Nelson, and M. M. Cox, Principles of Biochemistry, Worth Publishing, New York, NY, USA, 2nd ed edition, 1993.
[27]  S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, “Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions,” Letters in Applied Microbiology, vol. 25, no. 4, pp. 279–283, 1997.
[28]  G. McDonnell and A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 147–179, 2001.
[29]  J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005.
[30]  C. Wang, N. T. Flynn, and R. Langer, “Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites,” Advanced Materials, vol. 16, no. 13, pp. 1074–1079, 2004.
[31]  J. Zhang, S. Xu, and E. Kumacheva, “Photogeneration of fluorescent silver nanoclusters in polymer microgels,” Advanced Materials, vol. 17, no. 19, pp. 2336–2340, 2005.
[32]  A. Biffis, N. Orlandi, and B. Corian, “Microgel-stabilized metal nanoclusters: size control by microgel nanomorphology,” Advanced Materials, vol. 15, no. 18, pp. 1551–1555, 2003.
[33]  Y. Xiang and D. Chen, “Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA-PEGMA-MAA) composite hydrogel,” European Polymer Journal, vol. 43, no. 10, pp. 4178–4187, 2007.
[34]  Y. M. Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, “Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications,” Polymer, vol. 48, no. 1, pp. 158–164, 2007.
[35]  T. Heinze and T. Liebert, “Unconventional methods in cellulose functionalization,” Progress in Polymer Science, vol. 26, no. 9, pp. 1689–1762, 2001.
[36]  J. H. Guo, G. W. Skinner, W. W. Harcum, and P. E. Barnum, “Pharmaceutical applications of naturally occurring water-soluble polymers,” Pharmaceutical Science and Technology Today, vol. 1, no. 6, pp. 254–261, 1998.
[37]  K. Pal, A. K. Banthia, and D. K. Majumdar, “Preparation of novel pH-sensitive hydrogels of carboxymethyl cellulose acrylates: a comparative study,” Materials and Manufacturing Processes, vol. 21, pp. 877–882, 2006.
[38]  C. Saykan, R. Coskun, and S. Kirbag, “Poly(crotonic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-metal complexes with copper(II), cobalt(II), and nickel(II): synthesis, characterization and antimicrobial activity,” European Polymer Journal, vol. 43, pp. 4028–4036, 2007.
[39]  M. V. Dinu, M. M. Ozmen, E. S. Dragan, and O. Okay, “Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels,” Polymer, vol. 48, no. 1, pp. 195–204, 2007.
[40]  S. Conti, L. Maggi, L. Segale et al., “Matrices containing NaCMC and HPMC. 1. Dissolution performance characterization,” International Journal of Pharmaceutics, vol. 333, no. 1-2, pp. 136–142, 2007.
[41]  K. Varaprasad, K. Vimala, S. Ravindra, N. N. Reddy, and K. Mohana Raju, “Development of sodium carboxymethyl cellulose-based poly(acrylamide-co-2acrylamido-2-methyl-1-propane sulfonic acid) hydrogels for in vitro drug release studies of ranitidine hydrochloride an anti-ulcer drug,” Polymer-Plastics Technology and Engineering, vol. 50, no. 1199, 1207 pages, 2011.
[42]  A. Pourjavadi, H. Ghasemzadeh, and F. Mojahedi, “Swelling properties of CMC-g-Poly (AAm-co-AMPS) superabsorbent hydrogel,” Journal of Applied Polymer Science, vol. 113, no. 6, pp. 3442–3449, 2009.
[43]  J. Wu, J. Lin, M. Zhou, and C. Wei, “Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite,” Macromolecular Rapid Communications, vol. 21, no. 15, pp. 1032–1034, 2000.
[44]  A. S. Hoffmann, “Intelligent polymers (in Medicine and Biotechnology),” in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., vol. 5, p. 3282, CRC Press, Boca Raton, Fla, USA, 1996.
[45]  A. Taleb, C. Petit, and M. P. Pileni, “Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles,” Journal of Physical Chemistry B, vol. 102, no. 12, pp. 2214–2220, 1998.
[46]  M. A. Noginov, G. Zhu, M. Bahoura et al., “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Applied Physics B, vol. 86, no. 3, pp. 455–460, 2007.
[47]  U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25, Springer, Berlin, Germany, 1995.
[48]  S. L. Amruth, J. S. Sathish, B. P. Ramachandra, and B. P. J, “Synthesis, characterization and dyeing assessment of some novel disperse azodyes based on 1-(4-amino 2-methyl phenyl)-2-(n- phenyl amino) ethanone onnylon and polyester fabrics,” Journal of Chemical and Pharmaceutical Researc, vol. 2, pp. 478–482, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413