全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production Methods for Hyaluronan

DOI: 10.1155/2013/624967

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hyaluronan is a polysaccharide with multiple functions in the human body being involved in creating flexible and protective layers in tissues and in many signalling pathways during embryonic development, wound healing, inflammation, and cancer. Hyaluronan is an important component of active pharmaceutical ingredients for treatment of, for example, arthritis and osteoarthritis, and its commercial value far exceeds that of other microbial extracellular polysaccharides. Traditionally hyaluronan is extracted from animal waste which is a well-established process now. However, biotechnological synthesis of biopolymers provides a wealth of new possibilities. Therefore, genetic/metabolic engineering has been applied in the area of tailor-made hyaluronan synthesis. Another approach is the controlled artificial (in vitro) synthesis of hyaluronan by enzymes. Advantage of using microbial and enzymatic synthesis for hyaluronan production is the simpler downstream processing and a reduced risk of viral contamination. In this paper an overview of the different methods used to produce hyaluronan is presented. Emphasis is on the advancements made in the field of the synthesis of bioengineered hyaluronan. 1. Introduction Hyaluronic acid, also known as hyaluronan, is a linear polysaccharide composed of a repeating disaccharide unit of β(1,4)-glucuronic acid (GlcUA)-β(1,3)-N-acetylglucosamine (GlcNAc) (Figure 1). Both individual carbohydrate residues in hyaluronan adopt the stable chair conformation which determines the conformation of the polymer in solution that is described as an overall random coil structure that may have also highly flexible regions. Nevertheless, in terms of chemical structure, hyaluronan is a simple linear polymer with high molecular mass and exceptional rheological properties. Hyaluronan is a member of the glycosaminoglycans family that includes chondroitin/dermatan sulfate, keratan sulfate, and heparin/heparan sulfate, each with a characteristic disaccharide-repeating structure of an amino sugar, either glucosamine or galactosamine, and a hexose, either galactose, glucuronic acid, or iduronic acid, which can be carboxylated or sulfated [1]. Hyaluronan is the only glycosaminoglycan member that is not sulfated and is not covalently bound to a proteoglycan core protein. Figure 1: Repeating unit of hyaluronan. Research on hyaluronan expands over more than one century (Table 1). The first report that can be linked to hyaluronan dates from 1880, when the French chemist Portes observed that the mucin in the vitreous body, which he named “hyalomucine,”

References

[1]  P. L. DeAngelis, “Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow,” Applied Microbiology and Biotechnology, vol. 94, no. 2, pp. 295–305, 2012.
[2]  H. G. Garg and C. A. Hales, Chemistry and Biology of Hyaluronan, Elsevier, 2004.
[3]  K. Meyer and J. W. Palmer, “The polysaccharde of the vitreous humor,” The Journal of Biological Chemistry, vol. 107, no. 3, pp. 629–634, 1934.
[4]  B. Weissmann and K. Meyer, “The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord,” Journal of the American Chemical Society, vol. 76, no. 7, pp. 1753–1757, 1954.
[5]  E. A. Balazs, “Ultrapure hyaluronic acid and the use thereof,” U.S. Patent, US4141973, 1979.
[6]  P. L. DeAngelis, J. Papaconstantinou, and P. H. Weigel, “Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes,” The Journal of Biological Chemistry, vol. 268, no. 26, pp. 19181–19184, 1993.
[7]  P. L. DeAngelis, J. Papaconstantinou, and P. H. Weigel, “Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria,” The Journal of Biological Chemistry, vol. 268, no. 20, pp. 14568–14571, 1993.
[8]  G. Blatter and J. C. Jacquinet, “The use of 2-deoxy-2-trichloroacetamido-D-glucopyranose derivatives in syntheses of hyaluronic acid-related tetra-, hexa-, and octa-saccharides having a methyl β-D-glucopyranosiduronic acid at the reducing end,” Carbohydrate Research, vol. 288, pp. 109–125, 1996.
[9]  P. L. DeAngelis, L. C. Oatman, and D. F. Gay, “Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors,” The Journal of Biological Chemistry, vol. 278, no. 37, pp. 35199–35203, 2003.
[10]  F. K. Kooy, Enzymatic Production of Hyaluronan Oligo- and Polysaccharides, Wageningen University, Wageningen, The Netherlands, 2010.
[11]  B. Porsch, R. Laga, and C. Konak, “Batch and size-exclusion chromatographic characterization of ultra-high molar mass sodium hyaluronate containing low amounts of strongly scattering impurities by dual low angle light scattering/refractometric detection,” Journal of Liquid Chromatography and Related Technologies, vol. 31, no. 20, pp. 3077–3093, 2008.
[12]  A. Shiedlin, R. Bigelow, W. Christopher et al., “Evaluation of hyaluronan from different sources: streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord,” Biomacromolecules, vol. 5, no. 6, pp. 2122–2127, 2004.
[13]  R. Mendichi and L. Soltes, “Hyaluronan molecular weight and polydispersity in some commercial intra-articular injectable preparations and in synovial fluid,” Inflammation Research, vol. 51, no. 3, pp. 115–116, 2002.
[14]  R. Stern, “Devising a pathway for hyaluronan catabolism: are we there yet?” Glycobiology, vol. 13, no. 12, pp. 105R–115R, 2003.
[15]  M. Erickson and R. Stern, “Chain gangs: new aspects of hyaluronan metabolism,” Biochemistry Research International, vol. 2012, Article ID 893947, 9 pages, 2012.
[16]  T. C. Laurent and J. R. E. Fraser, “Hyaluronan,” The FASEB Journal, vol. 6, no. 7, pp. 2397–2404, 1992.
[17]  P. L. DeAngelis, “Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses,” Cellular and Molecular Life Sciences, vol. 56, no. 7-8, pp. 670–682, 1999.
[18]  T. E. Hardingham and H. Muir, “The specific interaction of hyaluronic acid with cartilage proteoglycans,” Biochimica et Biophysica Acta, vol. 279, no. 2, pp. 401–405, 1972.
[19]  V. C. Hascall, “Hyaluronan, a common thread,” Glycoconjugate Journal, vol. 17, no. 7–9, pp. 607–616, 2000.
[20]  N. Afratis, C. Gialeli, D. Nikitovic, et al., “Glycosaminoglycans: key players in cancer cell biology and treatment,” FEBS Journal, vol. 279, no. 7, pp. 1177–1197, 2012.
[21]  C. Schiraldi, A. La Gatta, and M. De Rosa, “Biotechnological production and application of hyaluronan,” in Biopolymers, M. Elnashar, Ed., pp. 387–412, InTech, Rijeka, Croatia, 2010.
[22]  F. Freitas, V. D. Alves, and M. A. M. Reis, “Advances in bacterial exopolysaccharides: from production to biotechnological applications,” Trends in Biotechnology, vol. 29, no. 8, pp. 388–398, 2011.
[23]  B. D. Ulery, L. S. Nair, and C. T. Laurencin, “Biomedical applications of biodegradable polymers,” Journal of Polymer Science B, vol. 49, no. 12, pp. 832–864, 2011.
[24]  R. Stern, A. A. Asari, and K. N. Sugahara, “Hyaluronan fragments: an information-rich system,” European Journal of Cell Biology, vol. 85, no. 8, pp. 699–715, 2006.
[25]  B. F. Chong, L. M. Blank, R. Mclaughlin, and L. K. Nielsen, “Microbial hyaluronic acid production,” Applied Microbiology and Biotechnology, vol. 66, no. 4, pp. 341–351, 2005.
[26]  S. Ghatak, S. Misra, and B. P. Toole, “Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway,” The Journal of Biological Chemistry, vol. 277, no. 41, pp. 38013–38020, 2002.
[27]  J. Y. Lee and A. P. Spicer, “Hyaluronan: a multifunctional, megaDalton, stealth molecule,” Current Opinion in Cell Biology, vol. 12, no. 5, pp. 581–586, 2000.
[28]  P. L. DeAngelis and P. H. Weigel, “Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme,” Biochemistry, vol. 33, no. 31, pp. 9033–9039, 1994.
[29]  P. Prehm, “Hyaluronate is synthesized at plasma membranes,” Biochemical Journal, vol. 220, no. 2, pp. 597–600, 1984.
[30]  A. A. E. Chavaroche, L. A. M. van den Broek, and G. Eggink, “Production methods for heparosan, a precursor of heparin and heparan sulfate,” Carbohydrate Polymers, vol. 93, no. 1, pp. 38–47, 2013.
[31]  N. Itano, “Hyaluronan biosynthesis: a multifaceted process,” Connective Tissue, vol. 33, no. 3, pp. 221–226, 2001.
[32]  C. A. de la Motte and J. A. Drazba, “Viewing hyaluronan: imaging contributes to imagining new roles for this amazing matrix polymer,” Journal of Histochemistry and Cytochemistry, vol. 59, no. 3, pp. 252–257, 2011.
[33]  N. Itano and K. Kimata, “Molecular cloning of human hyaluronan synthase,” Biochemical and Biophysical Research Communications, vol. 222, no. 3, pp. 816–820, 1996.
[34]  A. P. Spicer, M. L. Augustine, and J. A. McDonald, “Molecular cloning and characterization of a putative mouse hyaluronan synthase,” The Journal of Biological Chemistry, vol. 271, no. 38, pp. 23400–23406, 1996.
[35]  N. Itano, T. Sawai, M. Yoshida et al., “Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties,” The Journal of Biological Chemistry, vol. 274, no. 35, pp. 25085–25092, 1999.
[36]  P. Heldin, “Molecular mechanisms that regulate hyaluronan synthesis,” Gene Therapy and Molecular Biology, vol. 3, pp. 465–474, 1999.
[37]  A. Jacobson, J. Brinck, M. J. Briskin, A. P. Spicer, and P. Heldin, “Expression of human hyaluronan syntheses in response to external stimuli,” Biochemical Journal, vol. 348, no. 1, pp. 29–35, 2000.
[38]  B. A. Dougherty and I. Van de Rijn, “Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity,” The Journal of Biological Chemistry, vol. 268, no. 10, pp. 7118–7124, 1993.
[39]  B. A. Dougherty and I. Van de Rijn, “Molecular characterization of hasA from an operon required for hyaluronic acid synthesis in group A streptococci,” The Journal of Biological Chemistry, vol. 269, no. 1, pp. 169–175, 1994.
[40]  D. L. Crater, B. A. Dougherty, and I. Van de Rijn, “Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose pyrophosphorylase activity,” The Journal of Biological Chemistry, vol. 270, no. 48, pp. 28676–28680, 1995.
[41]  A. Markovitz, J. A. Cifonelli, and A. Dorfman, “The biosynthesis of hyaluronic acid by group A Streptococcus. VI. Biosynthesis from uridine nucleotides in cell-free extracts,” The Journal of Biological Chemistry, vol. 234, pp. 2343–2350, 1959.
[42]  K. Kumari and P. H. Weigel, “Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from Group C Streptococcus equisimilis,” The Journal of Biological Chemistry, vol. 272, no. 51, pp. 32539–32546, 1997.
[43]  P. L. DeAngelis and A. M. Achyuthan, “Yeast-derived recombinant DG42 protein of Xenopus can synthesize hyaluronan in vitro,” The Journal of Biological Chemistry, vol. 271, no. 39, pp. 23657–23660, 1996.
[44]  P. H. Weigel, V. C. Hascall, and M. Tammi, “Hyaluronan synthases,” The Journal of Biological Chemistry, vol. 272, no. 22, pp. 13997–14000, 1997.
[45]  P. L. DeAngelis, W. Jing, M. V. Graves, D. E. Burbank, and J. L. Van Etten, “Hyaluronan synthase of chlorella virus PBCV-1,” Science, vol. 278, no. 5344, pp. 1800–1803, 1997.
[46]  P. M. Coutinho, E. Deleury, G. J. Davies, and B. Henrissat, “An evolving hierarchical family classification for glycosyltransferases,” Journal of Molecular Biology, vol. 328, no. 2, pp. 307–317, 2003.
[47]  A. Jong, C. H. Wu, H. M. Chen et al., “Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection,” Eukaryotic Cell, vol. 6, no. 8, pp. 1486–1496, 2007.
[48]  P. L. DeAngelis, W. Jing, R. R. Drake, and A. M. Achyuthan, “Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida,” The Journal of Biological Chemistry, vol. 273, no. 14, pp. 8454–8458, 1998.
[49]  P. H. Weigel and P. L. DeAngelis, “Hyaluronan synthases: a decade-plus of novel glycosyltransferases,” The Journal of Biological Chemistry, vol. 282, no. 51, pp. 36777–36781, 2007.
[50]  S. Bodevin-Authelet, M. Kusche-Gullberg, P. E. Pummill, P. L. DeAngelis, and U. Lindahl, “Biosynthesis of hyaluronan: direction of chain elongation,” The Journal of Biological Chemistry, vol. 280, no. 10, pp. 8813–8818, 2005.
[51]  P. E. Pummill, T. A. Kane, E. S. Kempner, and P. L. DeAngelis, “The functional molecular mass of the Pasteurella hyaluronan synthase is a monomer,” Biochimica et Biophysica Acta, vol. 1770, no. 2, pp. 286–290, 2007.
[52]  P. L. DeAngelis, “Microbial glycosaminoglycan glycosyltransferases,” Glycobiology, vol. 12, no. 1, pp. 9R–16R, 2002.
[53]  K. Rilla, H. Siiskonen, A. P. Spicer, J. M. T. Hyttinen, M. I. Tammi, and R. H. Tammi, “Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity,” The Journal of Biological Chemistry, vol. 280, no. 36, pp. 31890–31897, 2005.
[54]  M. Nardini, M. Ori, D. Vigetti, R. Gornati, I. Nardi, and R. Perris, “Regulated gene expression of hyaluronan synthases during Xenopus laevis development,” Gene Expression Patterns, vol. 4, no. 3, pp. 303–308, 2004.
[55]  J. Y. L. Tien and A. P. Spicer, “Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns,” Developmental Dynamics, vol. 233, no. 1, pp. 130–141, 2005.
[56]  M. Suzuki, T. Asplund, H. Yamashita, C. H. Heldin, and P. Heldin, “Stimulation of hyaluronan biosynthesis by platelet-derived growth factor-BB and transforming growth factor-β1 involves activation of protein kinase C,” Biochemical Journal, vol. 307, no. 3, pp. 817–821, 1995.
[57]  H. Chao and A. P. Spicer, “Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation,” The Journal of Biological Chemistry, vol. 280, no. 30, pp. 27513–27522, 2005.
[58]  D. Vigetti, A. Genasetti, E. Karousou et al., “Modulation of hyaluronan synthase activity in cellular membrane fractions,” The Journal of Biological Chemistry, vol. 284, no. 44, pp. 30684–30694, 2009.
[59]  L. M. Blank, P. Hugenholtz, and L. K. Nielsen, “Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci,” Journal of Molecular Evolution, vol. 67, no. 1, pp. 13–22, 2008.
[60]  W. Y. Chen, E. Marcellin, J. Hung, and L. K. Nielsen, “Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus,” The Journal of Biological Chemistry, vol. 284, no. 27, pp. 18007–18014, 2009.
[61]  L. Soltes, R. Mendichi, D. Lath, M. Mach, and D. Bako?, “Molecular characteristics of some commercial high-molecular-weight hyaluronans,” Biomedical Chromatography, vol. 16, no. 7, pp. 459–462, 2002.
[62]  P. S. Harmon, E. P. Maziarz, and X. M. Liu, “Detailed characterization of hyaluronan using aqueous size exclusion chromatography with triple detection and multiangle light scattering detection,” Journal of Biomedical Materials Research B, vol. 100, no. 7, pp. 1955–1960, 2012.
[63]  E. U. Ignatova and A. N. Gurov, “Principles of extraction and purification of hyaluronic acid,” Khimiko-Farmatsevticheskii Zhurnal, vol. 24, no. 3, pp. 42–46, 1990.
[64]  I. Amagai, Y. Tashiro, and H. Ogawa, “Improvement of the extraction procedure for hyaluronan from fish eyeball and the molecular characterization,” Fisheries Science, vol. 75, no. 3, pp. 805–810, 2009.
[65]  M. O'Regan, I. Martini, F. Crescenzi, C. De Luca, and M. Lansing, “Molecular mechanisms and genetics of hyaluronan biosynthesis,” International Journal of Biological Macromolecules, vol. 16, no. 6, pp. 283–286, 1994.
[66]  G. Kogan, L. ?oltés, R. Stern, and P. Gemeiner, “Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications,” Biotechnology Letters, vol. 29, no. 1, pp. 17–25, 2007.
[67]  J. C. Thonard, S. A. Migliore, and R. Blustein, “Isolation of hyaluronic acid from broth cultures of Streptococci,” The Journal of Biological Chemistry, vol. 239, pp. 726–728, 1964.
[68]  F. E. Kendall, M. Heidelberger, and M. H. Dawson, “A serologically inactive polysaccharide elaborated by mocoid strains of group A hemolytic Streptococcus,” The Journal of Biological Chemistry, vol. 118, no. 1, pp. 61–69, 1937.
[69]  B. Holmstrom and J. Ricica, “Production of hyaluronic acid by a Streptococcal strain in batch culture,” Applied Environmental Microbiology, vol. 15, no. 6, pp. 1409–1413, 1967.
[70]  J. H. Kim, S. J. Yoo, D. K. Oh et al., “Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid,” Enzyme and Microbial Technology, vol. 19, no. 6, pp. 440–445, 1996.
[71]  N. Izawa, T. Hanamizu, R. Iizuka et al., “Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid,” Journal of Bioscience and Bioengineering, vol. 107, no. 2, pp. 119–123, 2009.
[72]  N. Izawa, M. Serata, T. Sone, T. Omasa, and H. Ohtake, “Hyaluronic acid production by recombinant Streptococcus thermophilus,” Journal of Bioscience and Bioengineering, vol. 111, no. 6, pp. 665–670, 2011.
[73]  H. J. Gao, G. C. Du, and J. Chen, “Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus,” World Journal of Microbiology and Biotechnology, vol. 22, no. 4, pp. 399–408, 2006.
[74]  X. J. Duan, H. X. Niu, W. S. Tan, and X. Zhang, “Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus,” Journal of Microbiology and Biotechnology, vol. 19, no. 3, pp. 299–306, 2009.
[75]  J. Zhang, X. Ding, L. Yang, and Z. Kong, “A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01,” Applied Microbiology and Biotechnology, vol. 72, no. 1, pp. 168–172, 2006.
[76]  J. H. Im, J. M. Song, J. H. Kang, and D. J. Kang, “Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 11, pp. 1337–1344, 2009.
[77]  D. C. Armstrong, M. J. Cooney, and M. R. Johns, “Growth and amino acid requirements of hyaluronic-acid producing Streptococcus zooepidemicus,” Applied Microbiology and Biotechnology, vol. 47, no. 3, pp. 309–312, 1997.
[78]  M. J. Cooney, L. T. Goh, P. L. Lee, and M. R. Johns, “Structured model-based analysis and control of the hyaluronic acid fermentation by Streptococcus zooepidemicus: physiological implications of glucose and complex-nitrogen-limited growth,” Biotechnology Progress, vol. 15, no. 5, pp. 898–910, 1999.
[79]  W. C. Huang, S. J. Chen, and T. L. Chen, “The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation,” Biochemical Engineering Journal, vol. 32, no. 3, pp. 239–243, 2006.
[80]  B. F. Chong and L. K. Nielsen, “Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase,” Biochemical Engineering Journal, vol. 16, no. 2, pp. 153–162, 2003.
[81]  B. F. Chong and L. K. Nielsen, “Amplifying the cellular reduction potential of Streptococcus zooepidemicus,” Journal of Biotechnology, vol. 100, no. 1, pp. 33–41, 2003.
[82]  T. F. Wu, W. C. Huang, Y. C. Chen, Y. G. Tsay, and C. S. Chang, “Proteomic investigation of the impact of oxygen on the protein profiles of hyaluronic acid-producing Streptococcus zooepidemicus,” Proteomics, vol. 9, no. 19, pp. 4507–4518, 2009.
[83]  M. R. Johns, L. T. Goh, and A. Oeggerli, “Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus,” Biotechnology Letters, vol. 16, no. 5, pp. 507–512, 1994.
[84]  S. Hasegawa, M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe, “Productivity of concentrated hyaluronic acid using a Maxblend (R) fermentor,” Journal of Bioscience and Bioengineering, vol. 88, no. 1, pp. 68–71, 1999.
[85]  X. Zhang, X. J. Duan, and W. S. Tan, “Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus,” Food Chemistry, vol. 119, no. 4, pp. 1643–1646, 2010.
[86]  M. Cazzola, F. O'regan, and V. Corsa, “Culture medium and process for the preparation of high molecular weight hyaluronic acid,” Fidia Advanced Biopolymers S.R.L., 2003.
[87]  I. Van De Rijn, “Streptococcal hyaluronic acid: Proposed mechanisms of degradation and loss of synthesis during stationary phase,” Journal of Bacteriology, vol. 156, no. 3, pp. 1059–1065, 1983.
[88]  A. Mausolf, J. Jungmann, H. Robenek, and P. Prehm, “Shedding of hyaluronate synthase from streptococci,” Biochemical Journal, vol. 267, no. 1, pp. 191–196, 1990.
[89]  D. C. Ellwood, C. G. T. Evans, G. M. Dunn, et al., “Production of hyaluronic acid,” Fermentech Medical Limited, 1996.
[90]  W. C. Huang, S. J. Chen, and T. L. Chen, “Production of hyaluronic acid by repeated batch fermentation,” Biochemical Engineering Journal, vol. 40, no. 3, pp. 460–464, 2008.
[91]  L. M. Blank, R. L. McLaughlin, and L. K. Nielsen, “Stable production of hyaluronic acid in streptococcus zooepidemicus chemostats operated at high dilution rate,” Biotechnology and Bioengineering, vol. 90, no. 6, pp. 685–693, 2005.
[92]  H. Y. Han, S. H. Jang, E. C. Kim, et al., “Microorganism producing hyaluronic acid and purification method of hyaluronic acid,” p. 26, 2004.
[93]  S. Stahl, “Methods and means for the production of hyaluronic acid,” US6090596, 2000.
[94]  E. Marcellin, W. Y. Chen, and L. K. Nielsen, “Understanding plasmid effect on hyaluronic acid molecular weight produced by Streptococcus equi subsp. zooepidemicus,” Metabolic Engineering, vol. 12, no. 1, pp. 62–69, 2010.
[95]  J. Z. Sheng, P. X. Ling, X. Q. Zhu et al., “Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer,” Journal of Applied Microbiology, vol. 107, no. 1, pp. 136–144, 2009.
[96]  H. Yu and G. Stephanopoulos, “Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid,” Metabolic Engineering, vol. 10, no. 1, pp. 24–32, 2008.
[97]  Z. Mao, H. D. Shin, and R. Chen, “A recombinant E. coli bioprocess for hyaluronan synthesis,” Applied Microbiology and Biotechnology, vol. 84, no. 1, pp. 63–69, 2009.
[98]  B. Widner, R. Behr, S. Von Dollen et al., “Hyaluronic acid production in Bacillus subtilis,” Applied and Environmental Microbiology, vol. 71, no. 7, pp. 3747–3752, 2005.
[99]  Z. Mao and R. R. Chen, “Recombinant synthesis of hyaluronan by Agrobacterium sp,” Biotechnology Progress, vol. 23, no. 5, pp. 1038–1042, 2007.
[100]  S. B. Prasad, G. Jayaraman, and K. B. Ramachandran, “Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis,” Applied Microbiology and Biotechnology, vol. 86, no. 1, pp. 273–283, 2010.
[101]  L. J. Chien and C. K. Lee, “Hyaluronic acid production by recombinant Lactococcus lactis,” Applied Microbiology and Biotechnology, vol. 77, no. 2, pp. 339–346, 2007.
[102]  S. B. Prasad, K. B. Ramachandran, and G. Jayaraman, “Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis,” Applied Microbiology and Biotechnology, vol. 94, no. 6, pp. 1593–1607, 2012.
[103]  A. Sloma, et al., “Recombinant expression of bacterial hyaluronan synthase operon genes in Bacillus and hyaluronic acid production,” p. 218, 2003.
[104]  M. V. Graves, D. E. Burbank, R. Roth, J. Heuser, P. L. Deangelis, and J. L. Van Etten, “Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae,” Virology, vol. 257, no. 1, pp. 15–23, 1999.
[105]  C. De Luca, M. Lansing, I. Martini et al., “Enzymatic synthesis of hyaluronic acid with regeneration of sugar nucleotides,” Journal of the American Chemical Society, vol. 117, no. 21, pp. 5869–5870, 1995.
[106]  P. L. DeAngelis, “Monodisperse hyaluronan polymers: synthesis and potential applications,” Current Pharmaceutical Biotechnology, vol. 9, no. 4, pp. 246–248, 2008.
[107]  F. K. Kooy, M. Ma, H. H. Beeftink, G. Eggink, J. Tramper, and C. G. Boeriu, “Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis,” Analytical Biochemistry, vol. 384, no. 2, pp. 329–336, 2009.
[108]  Y. I. Shimma, F. Saito, F. Oosawa, and Y. Jigami, “Construction of a library of human glycosyltransferases immobilized in the cell wall of Saccharomyces cerevisiae,” Applied and Environmental Microbiology, vol. 72, no. 11, pp. 7003–7012, 2006.
[109]  W. Jing and P. L. De Angelis, “Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide,” Glycobiology, vol. 10, no. 9, pp. 883–889, 2000.
[110]  W. Jing and P. L. DeAngelis, “Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida,” Glycobiology, vol. 13, no. 10, pp. 661–671, 2003.
[111]  S. Milewski, I. Gabriel, and J. Olchowy, “Enzymes of UDP-GlcNAc biosynthesis in yeast,” Yeast, vol. 23, no. 1, pp. 1–14, 2006.
[112]  H. Zhao and W. A. Van Der Donk, “Regeneration of cofactors for use in biocatalysis,” Current Opinion in Biotechnology, vol. 14, no. 6, pp. 583–589, 2003.
[113]  A. Ruffing and R. R. Chen, “Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis,” Microbial Cell Factories, vol. 5, p. 25, 2006.
[114]  W. Liu and P. Wang, “Cofactor regeneration for sustainable enzymatic biosynthesis,” Biotechnology Advances, vol. 25, no. 4, pp. 369–384, 2007.
[115]  C. A. G. M. Weijers, M. C. R. Franssen, and G. M. Visser, “Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides,” Biotechnology Advances, vol. 26, no. 5, pp. 436–456, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413