全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acetylation of Wood Flour from Four Wood Species Grown in Nigeria Using Vinegar and Acetic Anhydride

DOI: 10.1155/2013/141034

Full-Text   Cite this paper   Add to My Lib

Abstract:

Effect of acetylation on pretreated wood flour of four different wood species, Boabab (Adansonia digitata), Mahoganny (Daniella oliveri), African locust bean (Parkia biglobosa) and Beech wood (Gmelina arborea), had been investigated. The first batch of wood species were acetylated using acetic anhydride while the second batch were acetylated with commercial vinegar. Both experiments were conducted in the presence of varying amount of CaCl2 as catalyst and at temperature of 120°C for 3?h. The success of acetylation was determined based on Weight Percent Gain for each sample treated with either chemicals used. FT-IR, a veritable tool was used for the analysis of both treated and untreated samples to further investigate the success of acetylation. The results showed the presence of important band such as carbonyl absorptions at 1743, 1744, 1746, 1731, 1718 and 1696?cm?1 as appeared separately in the spectra of acetylated samples, confirming esterification occurred. The purpose of this work was to investigate the applicability of vinegar for acetylation of lignocellulosic fibers. Blends/composites were prepared by solution casting and their kinetics investigated in distilled water. The results indicated they could be used in outdoor applications such as, decking and packaging. 1. Introduction Composites have been described as materials composed of a hard material with discontinuous reinforcement that is embedded in a weaker, continuous matrix. Where the reinforcement matrix [1] maintains the position and orientation of the reinforcement. The constituents of the composites retain their individual, physical and chemical properties. Composite give a combination of qualities that are very different from the individual constituents that constituted the composite. Several reports on thermoplastic composites have been documented. Different types of modified and unmodified natural fibers such as wood fibers and flour, kenaf fibers, sago, rice starch, cornstarch, henequen fibers, and pineapple-leaf fibers, have been used as fillers in polymer matrices [1, 2]. Dimensional stability and strength of unmodified wood flour polyethylene composites was reported to have improved by increased in fiber loading(s). Unmodified starch have been used to produce composites of low density polyethylene (LDPE). Composites of unmodified starch have been reported to exhibit low mechanical properties, though with improved biodegradation. The introduction of ester groups unto starch surface, manipulate its properties and support the blending mechanism [3]. Wood-Plastic composites have

References

[1]  A. G. Supri and B. Y. Lim, “Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites,” Journal of Physical Science, vol. 20, no. 2, pp. 85–96, 2009.
[2]  A. Yakubu, G. A. Olatunji, O. Sunday, and A. Olubunmi, “Ketene acetylated wood cellulose for industrial applications in wood-base and polymer industry,” Journal of Environmental Science and Technology, vol. 5, no. 3, pp. 168–176, 2012.
[3]  K. Sriroth, R. Chollakup, K. Piyachomkwan, and C. G. Oates, “Biodegradable Plastics from Cassava Starch in Thailand,” Department of Biotechnology, Kasetsart University, Bangkok, Thailand.
[4]  B. K. Segerholm, R. E. Ibach, and M. E. P. Walinder, “Moisture Sorption of artificially aged wood-plastic composite,” BioResources, vol. 7, no. 1, pp. 1283–1293, 2012.
[5]  R. M. Rowell, R. Simonson, S. Hess, D. V. Plackett, and E. Dunningham, “Acetyl distribution in acetylated whole wood and reactivity of isolated wood cell wall components to acetic anhydride,” Wood Fibre Science, vol. 26, no. 1, p. 11, 1994.
[6]  C. R. Frihart, R. Brandon, and R. E. Ibach, “Selectivity of bonding for modified wood. USDA forest service, forest products laboratory,” in Proceedings of the 27th Annual Meeting of the Adhesion Society, Inco, From Molecules and Mechanic to Optimization and Design of Adhesive Joints, pp. 15329–18332, Adhesion Society, Madison, Wis, USA, 2004.
[7]  S. A. Abdulkareem and B. Garba, “Novel application of polymer dissolution technique,” Nigerian Journal of Pure and Applied Science, vol. 20, pp. 1799–1485, 2005.
[8]  V. M. Tuong and J. Li, “Effect of heat treatment on the change in color and dimensional stability of acacia hybrid wood,” BioResources, vol. 5, no. 2, pp. 1257–1267, 2010.
[9]  B. Mohebby, “Application of ATR infrared spectroscopy in wood acetylation,” Journal of Agricultural Science and Technology, vol. 10, no. 3, pp. 253–259, 2008.
[10]  R. Bod?rlǎu and C. A. Teacǎ, “Fourier transform infrared spectroscopy and thermal analysis of lignocellulose fillers treated with organic anhydrides,” Romanian Journal in Physics, vol. 54, no. 1-2, pp. 93–104, 2009.
[11]  A. S. H. Callum, How does the chemical modification of wood provide protection against decay fungi, school of agriculture and forest science, Presentation for COST E22, University of Wales Bangor, 2002.
[12]  M. Nasar, A. Emam, M. Sultan, and A. A. Abdel-Hakim, “Optimization of characterization of sugar cane bagasse liquefaction process,” Indian Journal of Science and Technology, vol. 13, no. 12, pp. 207–212, 2010.
[13]  Y. Indrayan, S. Yusuf, Y. S. Hadi, D. Nandika, and R. E. Ibach, “Dry wood termite resistance of Acetylated and Polymerized Tributyltin Acrylate (TBTA) indonesian and USA wood,” in Proceedings of the 3rd International Wood Science Symposium, Core University Program in the Field of Wood Science, November 2000.
[14]  R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th edition, 1961.
[15]  M. O. Adebajo and R. L. Frost, “Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton,” Spectrochimica Acta A, vol. 60, no. 1-2, pp. 449–453, 2004.
[16]  N. S. Cetin and N. Ozmen, “Acetylation of wood components and fourier transform infra-red spectroscopy studies,” African Journal of Biotechnology, vol. 10, no. 16, pp. 3091–3096, 2011.
[17]  A. Sandak, J. Sandak, W. Pradzynski, M. Zborowska, and M. Negri, “Near infrared spectroscopy as a tool for characterization of wood surface,” Folia Forestalia Polonica, vol. 40, pp. 31–40, 2009.
[18]  P. Sikorski, M. Wada, L. Heux, H. Shintani, and B. T. Stokke, “Crystal structure of cellulose triacetate I,” Macromolecules, vol. 37, no. 12, pp. 4547–4553, 2004.
[19]  J. George, S. S. Bhagawan, and S. Thomas, “Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre,” Composites Science and Technology, vol. 58, no. 9, pp. 1471–1485, 1998.
[20]  Y. Azeh, G. A. Olatunji, and P. A. Mamza, “Scanning electron microscopy and kinetic studies of ketene-acetylated wood/cellulose high-density polyethylene blends,” International Journal of Carbohydrate Chemistry, vol. 2012, Article ID 456491, 7 pages, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413