全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Winter Latitudinal Population Age-Structure of a Migratory Seagull (Larus fuscus) Differs between Its Two Major Migratory Flyways

DOI: 10.1155/2013/737616

Full-Text   Cite this paper   Add to My Lib

Abstract:

The migration is energy-demanding and is expected to greatly affect the distribution of individuals over the species range and condition the choice of migratory routes. We investigated the wintering distributions and migratory flyways use of geographically contiguous populations of Lesser Black-backed Gulls (Larus fuscus) and difference in population winter age structure between migratory flyways. Recoveries of metal ringed pulli from Denmark, Sweden, and Finland were used. The results showed that contiguous populations can have distinct wintering distribution patterns and migratory flyways. More importantly, we found that depending on the place of origin, the population winter distribution may or may not show a latitudinal cline in the age structure. The population migrating via the eastern Atlantic flyway (western flyway) showed a winter age-related latitudinal cline, with adults staying at more northern latitudes than immatures. In contrast, no such pattern was found in the population migrating along the Mediterranean/Black sea flyway (eastern flyway). Interestingly, immatures within the eastern population showed a more dispersed pattern of migratory bearings. Overall, our results enhance the importance of the migration flyway in shaping the age structure of populations in the winter quarters and how it may influence the effect of other factors like sexual maturation. 1. Introduction During migration, geographically distinct populations of the same species can face different challenges when moving between breeding and wintering areas. Ecological barriers, such as the Sahara Desert, or mountain ranges, such as the Alps or the Pyrenees, contribute to the shaping of migratory routes and the patterns of distribution of the species that have to cross them [1, 2]. Thus, in species that are spread over wide geographical ranges, populations from the extremes of the distribution can have different migratory problems to solve and can thus develop distinct migratory behaviours in response to the specific ecological constraints (e.g., different migratory routes or migration timings [3–5]). A longitudinal effect on the wintering distribution of populations has been well documented [6–9]; birds that breed furthest west in the breeding range tend to winter furthest west in the nonbreeding range, while those that breed furthest east also winter furthest east. This pattern represents a general tendency revealed by ringing recovery data for most groups of birds [1, 2]. Similarly, latitudinal effects can also be found within and among populations of the same species

References

[1]  R. E. Moreau, The Palearctic-African Bird Migration System, Academic Press, London, UK, 1972.
[2]  I. Newton, The Migration Ecology of Birds, Academic Press, London, UK, 2008.
[3]  S. Bauer, B. J. Ens, and M. Klaassen, “Many routes lead to Rome: potential causes for the multi-route migration system of Red Knots, Calidris canutus islandica,” Ecology, vol. 91, no. 6, pp. 1822–1831, 2010.
[4]  J. Shamoun-Baranes and H. van Gasteren, “Atmospheric conditions facilitate mass migration events across the North Sea,” Animal Behaviour, vol. 81, no. 4, pp. 691–704, 2011.
[5]  P. Pinet, S. Jaquemet, D. Pinaud, H. Weimerskirch, R. A. Phillips, and M. Le Corre, “Migration, wintering distribution and habitat use of an endangered tropical seabird, Barau's petrel Pterodroma baraui,” Marine Ecology Progress Series, vol. 423, pp. 291–302, 2011.
[6]  P. Berthold, A. J. Helbig, G. Mohr, and U. Querner, “Rapid microevolution of migratory behaviour in a wild bird species,” Nature, vol. 360, no. 6405, pp. 668–670, 1992.
[7]  P. Berthold and U. Querner, “Genetic basis of migratory behavior in European warblers,” Science, vol. 212, no. 4490, pp. 77–79, 1981.
[8]  V. Bingman, C. Budzynski, and A. Voggenhuber, “Migratory systems as adaptive responses to spatial and temporal variability in orientation stimuli,” in Avian Migration, P. Berthold, E. Gwinner, and E. Sonnenschein, Eds., pp. 567–469, Springer, Berlin, Germany, 2003.
[9]  A. J. Helbig, “Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla),” Behavioral Ecology and Sociobiology, vol. 28, no. 1, pp. 9–12, 1991.
[10]  W. A. Boyle, “Partial migration in birds: tests of three hypotheses in a tropical lekking frugivore,” Journal of Animal Ecology, vol. 77, no. 6, pp. 1122–1128, 2008.
[11]  J. M. Boland, “Leapfrog migration in north american shorebirds: intra- and interspecific examples,” Condor, vol. 92, pp. 284–290, 1990.
[12]  D. A. Cristol, B. M. Baker, and C. Carbone, “Differential migration revisited: latitudinal segregation by age and sex class,” Current Ornithology, vol. 15, pp. 33–88, 1999.
[13]  K. J. Mathot, B. D. Smith, and R. W. Elner, “Latitudinal clines in food distribution correlate with differential migration in the Western Sandpiper,” Ecology, vol. 88, no. 3, pp. 781–791, 2007.
[14]  P. A. M. Marques, A. M. Costa, P. Rock, and P. E. Jorge, “Age-related migration patterns in Larus fuscus spp,” Acta Ethologica, vol. 12, no. 2, pp. 87–92, 2009.
[15]  J. Gromadzka and L. Serra, “Differential migration of juvenile and adult Grey Plovers Pluvialis squatarola at the mouth of the Vistula River, Poland,” Ornis Fennica, vol. 75, no. 4, pp. 193–199, 1998.
[16]  P. Catry, A. Campos, V. Almada, and W. Cresswell, “Winter segregation of migrant European robins Erithacus rubecula in relation to sex, age and size,” Journal of Avian Biology, vol. 35, no. 3, pp. 204–209, 2004.
[17]  E. D. Ketterson and V. Nolan Jr., “The evolution of differential bird migration,” Current Ornithology, vol. 1, pp. 357–402, 1983.
[18]  P. A. M. Marques, D. Sowter, and P. E. Jorge, “Gulls can change their migratory behavior during lifetime,” Oikos, vol. 119, no. 6, pp. 946–951, 2010.
[19]  P. E. Jorge, D. Sowter, and P. A. M. Marques, “Differential annual movement patterns in a migratory species: effects of experience and sexual maturation,” PLoS ONE, vol. 6, no. 7, Article ID e22433, 2011.
[20]  J. Bonlokke, J. Madsen, K. Thorup, K. T. Pedersen, M. Bjerrum, and C. Rahbek, The Danish Bird Migration Atlas Kobenhavns Universitet, Kobenhavns, 2006.
[21]  T. Fransson, H. Osterblom, and S. Hall-Karlsson, Swedish Bird Ringing Atlas Volume 2, Grouses-Woodpeckers, Naturhistoriska Riksmuseet, Stockholm, Sweden, 2008.
[22]  C. B. Estabrook and G. F. Estabrook, “ACTUS: a solution to the problem of analysing sparse contingency tables,” Hist Methods, vol. 22, pp. 5–8, 1989.
[23]  S. Marshak, Earth: Portrait of a Planet, Norton & Company, New York, NY, USA, 2001.
[24]  R. J. Lopes, F. Hortas, and L. Wennerberg, “Geographical segregation in Dunlin Calidris alpina populations wintering along the East Atlantic migratory flyway—evidence from mitochondrial DNA analysis,” Diversity and Distributions, vol. 14, no. 5, pp. 732–741, 2008.
[25]  N. Varty and K. Tanner, Background Document for Lesser Black Backed Gull Larus Fuscus Fuscus, OSPAR Commission, 2009.
[26]  M. Helberg, G. H. Systad, I. Birkeland, N. H. Lorentzen, and J. O. Bustnes, “Migration patterns of adult and juvenile Lesser Black-backed Gulls Larus fuscus from northern Norway,” Ardea, vol. 97, no. 3, pp. 281–286, 2009.
[27]  P. Rock and I. Spence, “Lesser Black-backed gull,” in The Migration Atlas: Movements of the Birds of Britain and Ireland, C. V. Wernham, M. P. Toms, J. H. Marchant, J. A. Clark, G. M. Siriwardena, and S. R. Baillie, Eds., pp. 365–368, T. & A.D. Poyser, London, UK, 2002.
[28]  S. Cramp and K. Simmons, Eds., Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic, Vol III, 1983.
[29]  N. Chernetsov, D. Kishkinev, S. Gashkov, V. Kosarev, and C. V. Bolshakov, “Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from Siberia implies a detour around Central Asia,” Animal Behaviour, vol. 75, no. 2, pp. 539–545, 2008.
[30]  K. Thorup, T. Alerstam, M. Hake, and N. Kjellén, “Bird orientation: compensation for wind drift in migrating raptors is age dependent,” Proceedings of the Royal Society B, vol. 270, no. 1, pp. S8–S11, 2003.
[31]  J. O. Bustnes, T. Anker-Nilssen, and S.-H. Lorentsen, “Local and large-scale climatic variables as predictors of the breeding numbers of endangered Lesser Black-backed Gulls on the Norwegian Coast,” Journal of Ornithology, vol. 151, no. 1, pp. 19–26, 2010.
[32]  H. Weimerskirch, S. ?kesson, and D. Pinaud, “Postnatal dispersal of wandering albatrosses Diomedea exulans: implications for the conservation of the species,” Journal of Avian Biology, vol. 37, no. 1, pp. 23–28, 2006.
[33]  P. Rock, “Urban gulls: problems and solutions,” British Birds, vol. 98, no. 7, pp. 338–355, 2005.
[34]  J. Bonnedahl, M. Drobni, M. Gauthier-Clerc et al., “Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France,” PLoS ONE, vol. 4, no. 6, Article ID e5958, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133