全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

DOI: 10.1155/2013/424561

Full-Text   Cite this paper   Add to My Lib

Abstract:

One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200?nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100?nm nanotubule array, followed by the 200?nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer. 1. Introduction Nanostructured materials have long been used in catalysis, usually in the form of metallic nanoparticles on high surface area supports with nanoscale porosity. More recently, one-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn attention for such electrocatalytic applications, including fuel cells and electrochemical sensors. These types of structures present many potential advantages, including fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. Such 1D metallic nanostructures have been fabricated by a variety of methods, including template-based methods (wetting [1–4] and electrosynthesis or electrodeposition [5–11]), electrospinning [12], deposition onto nanowire or nanofiber supports [13–15], and others [16–19]. To date, most studies of these nanomaterials have focused on demonstrating the viability of the nanofabrication process and describing fundamental material properties such as morphology, composition, and crystal structure with far less attention paid to their functional properties. Electrocatalytic studies of 1D metal

References

[1]  M. Steinhart, J. H. Wendorff, and R. B. Wehrspohn, “Nanotubes à la Carte: Wetting of Porous Templates,” ChemPhysChem, vol. 4, no. 11, pp. 1171–1176, 2003.
[2]  M. Steinhart, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. G?sele, and J. H. Wendorff, “Palladium nanotubes with tailored wall morphologies,” Advanced Materials, vol. 15, no. 9, pp. 706–709, 2003.
[3]  Y. Luo, S. K. Lee, H. Hofmeister, M. Steinhart, and U. G?sele, “Pt nanoshell tubes by template wetting,” Nano Letters, vol. 4, no. 1, pp. 143–147, 2004.
[4]  P. G?ring, E. Pippel, H. Hofmeister, R. B. Wehrspohn, M. Steinhart, and U. G?sele, “Gold/carbon composite tubes and gold nanowires by impregnating templates with hydrogen tetrachloroaurate/acetone solutions,” Nano Letters, vol. 4, no. 6, pp. 1121–1125, 2004.
[5]  Y. Piao, H. Lim, J. Y. Chang, W. Y. Lee, and H. Kim, “Nanostructured materials prepared by use of ordered porous alumina membranes,” Electrochimica Acta, vol. 50, no. 15, pp. 2997–3013, 2005.
[6]  M. Xu, Z. Zhang, and X. Yang, “Electrocatalytic oxidation of methanol on Pd nanowire electrode in alkaline media,” Rare Metal Materials and Engineering, vol. 39, no. 1, pp. 129–133, 2010.
[7]  S. M. Choi, J. H. Kim, J. Y. Jung, E. Y. Yoon, and W. B. Kim, “Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation,” Electrochimica Acta, vol. 53, no. 19, pp. 5804–5811, 2008.
[8]  K. S. Napolskii, P. J. Barczuk, S. Y. Vassiliev, A. G. Veresov, G. A. Tsirlina, and P. J. Kulesza, “Templating of electrodeposited platinum group metals as a tool to control catalytic activity,” Electrochimica Acta, vol. 52, no. 28, pp. 7910–7919, 2007.
[9]  Y. J. Song, S. B. Han, and K. W. Park, “Pt nanowire electrodes electrodeposited in PVP for methanol electrooxidation,” Materials Letters, vol. 64, no. 18, pp. 1981–1984, 2010.
[10]  F. Cheng, X. Dai, H. Wang, S. P. Jiang, M. Zhang, and C. Xu, “Synergistic effect of Pd-Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation,” Electrochimica Acta, vol. 55, no. 7, pp. 2295–2298, 2010.
[11]  W. C. Choi and S. I. Woo, “Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell,” Journal of Power Sources, vol. 124, no. 2, pp. 420–425, 2003.
[12]  J. M. Kim, H. I. Joh, S. M. Jo et al., “Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation,” Electrochimica Acta, vol. 55, no. 16, pp. 4827–4835, 2010.
[13]  X. S. He, C. G. Hu, and H. Liu, “Fabrication of 3D Pt catalysts via support of Na2Ti3O7 nanowires for methanol and ethanol electrooxidation,” Catalysis Communications, vol. 12, no. 2, pp. 100–104, 2010.
[14]  L. Su, W. Jia, A. Schempf, and Y. Lei, “Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium,” Electrochemistry Communications, vol. 11, no. 11, pp. 2199–2202, 2009.
[15]  S. Sun, G. Zhang, D. Geng et al., “Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable: 3D electrodes for highly active electrocatalysts,” Chemistry, vol. 16, no. 3, pp. 829–835, 2010.
[16]  X. Gu, X. Cong, and Y. Ding, “Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation,” ChemPhysChem, vol. 11, no. 4, pp. 841–846, 2010.
[17]  Z. X. Liang, J. Y. Shi, S. J. Liao, and J. H. Zeng, “Noble metal nanowires incorporated Nafion membranes for reduction of methanol crossover in direct methanol fuel cells,” International Journal of Hydrogen Energy, vol. 35, no. 17, pp. 9182–9185, 2010.
[18]  I. S. Park, J. H. Choi, and Y. E. Sung, “Synthesis of 3?nm Pt nanowire using MCM-41 and electrocatalytic activity in methanol electro-oxidation,” Electrochemical and Solid-State Letters, vol. 11, no. 5, pp. B71–B75, 2008.
[19]  X. Wang and Q. Jiang, “Developing nanoscale inertial measurement systems with carbon nanotube oscillators,” Nanotechnology, vol. 19, no. 8, Article ID 085708, 2008.
[20]  Y. Zhong, C. L. Xu, L. B. Kong, and H. L. Li, “Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method,” Applied Surface Science, vol. 255, no. 5, pp. 3388–3393, 2008.
[21]  G. Y. Zhao, C. L. Xu, D. J. Guo, H. Li, and H. L. Li, “Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation,” Journal of Power Sources, vol. 162, no. 1, pp. 492–496, 2006.
[22]  H. Meng, S. Sun, J. P. Masse, and J. P. Dodelet, “Electrosynthesis of Pd single-crystal nanothorns and their application in the oxidation of formic acid,” Chemistry of Materials, vol. 20, no. 22, pp. 6998–7002, 2008.
[23]  J. Wang, Y. Chen, H. Liu, R. Li, and X. Sun, “Synthesis of Pd nanowire networks by a simple template-free and surfactant-free method and their application in formic acid electrooxidation,” Electrochemistry Communications, vol. 12, no. 2, pp. 219–222, 2010.
[24]  C. Anastasescu, M. Anastasescu, M. Zaharescu, and I. Balint, “Platinum-modified SiO2 with tubular morphology as efficient membrane-type microreactors for mineralization of formic acid,” Journal of Nanoparticle Research, vol. 14, article 1198, 2012.
[25]  Y. Kim, H. J. Kim, Y. S. Kim, S. M. Choi, M. H. Seo, and W. B. Kim, “Shape- and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation,” Journal of Physical Chemistry C, vol. 116, no. 34, pp. 18093–18100, 2012.
[26]  X. Zhang, W. Lu, J. Da, H. Wang, D. Zhao, and P. A. Webley, “Porous platinum nanowire arrays for direct ethanol fuel cell applications,” Chemical Communications, no. 2, pp. 195–197, 2009.
[27]  M. Steinhart, R. B. Wehrspohn, U. G?sele, and J. H. Wendorff, “Nanotubes by template wetting: a modular assembly system,” Angewandte Chemie, vol. 43, no. 11, pp. 1334–1344, 2004.
[28]  C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, and T. Barnard, “Direct formic acid fuel cells,” Journal of Power Sources, vol. 111, no. 1, pp. 83–89, 2002.
[29]  C. Rice, S. Ha, R. I. Masel, and A. Wieckowski, “Catalysts for direct formic acid fuel cells,” Journal of Power Sources, vol. 115, no. 2, pp. 229–235, 2003.
[30]  X. Yu and P. G. Pickup, “Recent advances in direct formic acid fuel cells (DFAFC),” Journal of Power Sources, vol. 182, no. 1, pp. 124–132, 2008.
[31]  Y. Zhu, S. Y. Ha, and R. I. Masel, “High power density direct formic acid fuel cells,” Journal of Power Sources, vol. 130, no. 1-2, pp. 8–14, 2004.
[32]  J. Giner, “The anodic oxidation of methanol and formic acid and the reductive. Adsorption of CO2,” Electrochimica Acta, vol. 9, no. 1, pp. 63–77, 1964.
[33]  A. Capon and R. Parsons, “The oxidation of formic acid on noble metal electrodes II. A comparison of the behaviour of pure electrodes,” Journal of Electroanalytical Chemistry, vol. 44, no. 2, pp. 239–254, 1973.
[34]  K. Kunimatsu, “Infrared spectroscopic study of methanol and formic acid adsorbates on a platinum electrode, part I: comparison of the infrared absorption intensities of linear CO(a) derived from CO, CH3OH and HCOOH,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 213, no. 1, pp. 149–157, 1986.
[35]  D. S. Corrigan and M. J. Weaver, “Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy,” Journal of Electroanalytical Chemistry, vol. 241, no. 1-2, pp. 143–162, 1988.
[36]  R. Parsons and T. VanderNoot, “The oxidation of small organic molecules. A survey of recent fuel cell related research,” Journal of Electroanalytical Chemistry, vol. 257, no. 1-2, pp. 9–45, 1988.
[37]  R. S. Jayashree, J. S. Spendelow, J. Yeom, C. Rastogi, M. A. Shannon, and P. J. A. Kenis, “Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells,” Electrochimica Acta, vol. 50, no. 24, pp. 4674–4682, 2005.
[38]  S. L. Gojkovi? and T. R. Vidakovi?, “Methanol oxidation on an ink type electrode using Pt supported on high area carbons,” Electrochimica Acta, vol. 47, no. 4, pp. 633–642, 2001.
[39]  D. T. Sawyer, A. Sobkowiak, J. Julian, and L. Roberts, Electrochemistry for Chemists, John Wiley & Sons, New York, NY, USA, 2nd edition, 1995.
[40]  G. Q. Lu, A. Crown, and A. Wieckowski, “Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes,” Journal of Physical Chemistry B, vol. 103, no. 44, pp. 9700–9711, 1999.
[41]  L. Palaikis and A. Wieckowski, “A catalytic study of formic acid oxidation on preferentially oriented platinum electrodes,” Catalysis Letters, vol. 3, no. 2, pp. 143–158, 1989.
[42]  W. Chen, J. Kim, S. Sun, and S. Chen, “Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid,” Langmuir, vol. 23, no. 22, pp. 11303–11310, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413