全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Survey of Eyespot Sexual Dimorphism across Nymphalid Butterflies

DOI: 10.1155/2013/926702

Full-Text   Cite this paper   Add to My Lib

Abstract:

Differences between sexes of the same species are widespread and are variable in nature. While it is often assumed that males are more ornamented than females, in the nymphalid butterfly genus Bicyclus, females have, on average, more eyespot wing color patterns than males. Here we extend these studies by surveying eyespot pattern sexual dimorphism across the Nymphalidae family of butterflies. Eyespot presence or absence was scored from a total of 38 wing compartments for two males and two females of each of 450 nymphalid species belonging to 399 different genera. Differences in eyespot number between sexes of each species were tallied for each wing surface (e.g., dorsal and ventral) of forewings and hindwings. In roughly 44% of the species with eyespots, females had more eyespots than males, in 34%, males had more eyespots than females, and, in the remaining 22% of the species, there was monomorphism in eyespot number. Dorsal and forewing surfaces were less patterned, but proportionally more dimorphic, than ventral and hindwing surfaces, respectively. In addition, wing compartments that frequently displayed eyespots were among the least sexually dimorphic. This survey suggests that dimorphism arises predominantly in “hidden” or “private” surfaces of a butterfly’s wing, as previously demonstrated for the genus Bicyclus. 1. Introduction Sexual dimorphisms are widespread and variable in nature and can result from either natural or sexual selection acting differentially on male and female traits [1–4]. Often, extensive mate-choice experiments, predation experiments, or documentation of sex-specific life histories need to be performed in single species before we understand which form of selection led to the evolution of the sex-specific traits [2]. A complementary approach to direct experimentation, however, is to survey the patterns of sexual dimorphism across a group of closely related organisms and discover whether these are congruent with the findings obtained for single members of the group. These comparative studies across species can help address whether the experimental knowledge obtained for a few species is generalizable across species. The eyespots in the nymphalid butterfly species Bicyclus anynana have been the subject of multiple laboratory experiments that concluded that they are likely evolving under both natural and sexual selection. Mate choice experiments as well as predation and mark-recapture experiments indicated that the dorsal eyespots are involved in mate signaling, whereas ventral eyespots play a role in deflecting the attacks of

References

[1]  C. E. Allen, B. J. Zwaan, and P. M. Brakefield, “Evolution of sexual dimorphism in the Lepidoptera,” Annual Review of Entomology, vol. 56, pp. 445–464, 2011.
[2]  D. J. Fairbairn, Odd Couples: Extraordinary Differences between the Sexes in the Animal Kingdom, Princeton University Press, Princeton, NJ, USA, 2013.
[3]  M. J. Kottler, “Darwin, Wallace, and the origin of sexual dimorphism,” Proceedings of the American Philosophical Society, vol. 124, no. 3, pp. 203–226, 1980.
[4]  J. J. Wiens, “Widespread loss of sexually selected traits: how the peacock lost its spots,” Trends in Ecology and Evolution, vol. 16, no. 9, pp. 517–523, 2001.
[5]  P. M. Brakefield and W. A. Frankino, “Polyphenisms in Lepidoptera: multidisciplinary approaches to studies of evolution and development,” in Phenotypic Plasticity in Insects Mechanisms and Consequences, D. W. Whitman and T. N. Ananthakrishnan, Eds., pp. 281–312, Science, Plymouth, UK, 2009.
[6]  A. Lyytinen, P. M. Brakefieid, and J. Mappes, “Significance of butterfly eyespots as an anti-predator device in ground-based and aerial attacks,” Oikos, vol. 100, no. 2, pp. 373–379, 2003.
[7]  K. L. Prudic, C. Jeon, H. Cao, and A. Monteiro, “Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation,” Science, vol. 331, no. 6013, pp. 73–75, 2011.
[8]  K. A. Robertson and A. Monteiro, “Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils,” Proceedings of the Royal Society B, vol. 272, no. 1572, pp. 1541–1546, 2005.
[9]  J. C. Oliver, K. A. Robertson, and A. Monteiro, “Accommodating natural and sexual selection in butterfly wing pattern evolution,” Proceedings of the Royal Society B, vol. 276, no. 1666, pp. 2369–2375, 2009.
[10]  J. C. Oliver and A. Monteiro, “On the origins of sexual dimorphism in butterflies,” Proceedings of the Royal Society B, vol. 278, no. 1714, pp. 1981–1988, 2011.
[11]  J. C. Oliver, X. Tong, L. F. Gall, W. H. Piel, and A. Monteiro, “A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression,” PLoS Genetics, vol. 8, no. 8, Article ID e1002893, 2012.
[12]  A. Monteiro, “Alternative models for the evolution of eyespots and of serial homology on Lepidopteran wings,” BioEssays, vol. 30, no. 4, pp. 358–366, 2008.
[13]  E. Westerman, A. Hodgins-Davis, A. Dinwiddie, and A. Monteiro, “Biased learning affects mate choice in a butterfly,” Proceedings of the National Academy of Sciences of the USA, vol. 109, no. 27, pp. 10948–10953, 2012.
[14]  M. Olofsson, A. Vallin, S. Jakobsson, and C. Wiklund, “Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths,” PLoS ONE, vol. 5, no. 5, Article ID e10798, 2010.
[15]  U. Kodandaramaiah, “The evolutionary significance of butterfly eyespots,” Behavioral Ecology, vol. 22, no. 6, pp. 1264–1271, 2011.
[16]  S. Merilaita, A. Vallin, U. Kodandaramaiah, M. Dimitrova, S. Ruuskanen, and T. Laaksonen, “Number of eyespots and their intimidating effect on na?ve predators in the peacock butterfly,” Behavioral Ecology, vol. 22, no. 6, pp. 1326–1331, 2011.
[17]  M. Stevens, “The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera,” Biological Reviews of the Cambridge Philosophical Society, vol. 80, no. 4, pp. 573–588, 2005.
[18]  M. Stevens, C. J. Hardman, and C. L. Stubbins, “Conspicuousness, not eye mimicry, makes “eyespots” effective antipredator signals,” Behavioral Ecology, vol. 19, no. 3, pp. 525–531, 2008.
[19]  A. Vallin, S. Jakobsson, J. Lind, and C. Wiklund, “Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits,” Proceedings of the Royal Society B, vol. 272, no. 1569, pp. 1203–1207, 2005.
[20]  A. Vallin, S. Jakobsson, and C. Wiklund, ““An eye for an eye?” On the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth,” Behavioral Ecology and Sociobiology, vol. 61, no. 9, pp. 1419–1424, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133