全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Drosophila melanogaster Selection for Survival after Infection with Bacillus cereus Spores: Evolutionary Genetic and Phenotypic Investigations of Respiration and Movement

DOI: 10.1155/2013/576452

Full-Text   Cite this paper   Add to My Lib

Abstract:

Laboratory populations of D. melanogaster have been subjected to selection for survival after live spores of B. cereus were introduced as a pathogenic agent. The present study was designed to investigate correlated traits: respiration as a metabolic trait and movement as a behavioral trait. An underlying hypothesis was that the evolution of increased survival after B. cereus infection exerts a metabolic cost associated with elevated immunity and this would be detected by increased respiration rates. There was support for this hypothesis in the male response to selection, but not for selected-line females. Two phenotypic effects were also observed in the study. Females especially showed a marked increase in respiration after mating compared to the other assay stages regardless of whether respiration was measured per fly or adjusted by lean mass or dry weight. Given that mating stimulates egg production, it is feasible that elevated metabolism was needed to provision oocytes with yolk. Females also moved less than males, perhaps due to behaviors related to oviposition whereas elevated male activity might be due to behaviors associated with seeking females and courtship. Relatively low movement of females indicated that their elevated respiration after mating was not due to a change in locomotion. 1. Introduction A tradeoff between immune function and reproduction has been observed in a range of studies. For example, an increase in reproductive effort is correlated with increased parasite incidence and disease [1, 2]. More generally, an increase in reproduction is associated with decreased immune system function [3, 4]. Two mechanisms have been proposed for this relationship. One is the Y model [5] in which there is an energetic competition between somatic function (immunity in the present study) and reproduction. The arms of the Y represent competition for energy between traits and the long axis represents resource input. Another potential mechanism for a tradeoff is a negative pleiotropic effect of hormones acting on two traits. An example is the effect of insulin signaling as a stimulator of reproduction and a suppressor of life span in D. melanogaster [6, 7]. In support of the role of hormones on insect life history tradeoffs, juvenile hormone (JH) has been shown to have negative pleiotropic effects on immunity and reproduction. In the flour beetle, Tenebrio molitor, mating causes a decrease in an immune system enzyme (phenoloxidase) by increasing the level of JH [8]. In the bee, Apis mellifera, a caste behavior was experimentally altered which

References

[1]  C. R. Townsend and P. Calow, Physiological Ecology: An Evolutionary Approach To Resource Use, Blackwell Scientific Publications, 1981.
[2]  I. P. F. Owens and K. Wilson, “Immunocompetence: a neglected life history trait or conspicuous red herring?” Trends in Ecology and Evolution, vol. 14, no. 5, pp. 170–172, 1999.
[3]  A. J. Zera and L. G. Harshman, “The physiology of life history trade-offs in animals,” Annual Review of Ecology and Systematics, vol. 32, pp. 95–126, 2001.
[4]  T. D. Williams, “Mechanisms underlying the costs of egg production,” BioScience, vol. 55, no. 1, pp. 39–48, 2005.
[5]  A. J. Van Noordwijk and G. Dejong, “Acquisition and allocation of resources—their influence on variation in life history tactics,” American Naturalist, vol. 128, pp. 137–142, 1986.
[6]  D. J. Clancy, D. Gems, L. G. Harshman et al., “Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein,” Science, vol. 292, no. 5514, pp. 104–106, 2001.
[7]  M. Tatar, A. Kopelman, D. Epstein, M. P. Tu, C. M. Yin, and R. S. Garofalo, “A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function,” Science, vol. 292, no. 5514, pp. 107–110, 2001.
[8]  J. Rolff and M. T. Siva-Jothy, “Copulation corrupts immunity: a mechanism for a cost of mating in insects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9916–9918, 2002.
[9]  S. A. O. Armitage, J. J. W. Thompson, J. Rolff, and M. T. Siva-Jothy, “Examining costs of induced and constitutive immune investment in Tenebrio molitor,” Journal of Evolutionary Biology, vol. 16, no. 5, pp. 1038–1044, 2003.
[10]  A. Jacot, H. Scheuber, and M. W. G. Brinkhof, “Costs of an induced immune response on sexual display and longevity in field crickets,” Evolution, vol. 58, no. 10, pp. 2280–2286, 2004.
[11]  M. K. N. Lawniczak, A. I. Barnes, J. R. Linklater, J. M. Boone, S. Wigby, and T. Chapman, “Mating and immunity in invertebrates,” Trends in Ecology and Evolution, vol. 22, no. 1, pp. 48–55, 2007.
[12]  K. M. Fedorka, M. Zuk, and T. A. Mousseau, “Immune suppression and the cost of reproduction in the ground cricket, Allonemobius socius,” Evolution, vol. 58, no. 11, pp. 2478–2485, 2004.
[13]  K. A. McKean and L. Nunney, “Bateman's principle and immunity: phenotypically plastic reproductive strategies predict changes in immunological sex differences,” Evolution, vol. 59, no. 7, pp. 1510–1517, 2005.
[14]  E. Svensson, L. Raberg, C. Koch, and D. Hasselquist, “Energetic stress, immunosuppression and the costs of an antibody response,” Functional Ecology, vol. 12, no. 6, pp. 912–919, 1998.
[15]  I. P. F. Owens and K. Wilson, “Immunocompetence: a neglected life history trait or conspicuous red herring?” Trends in Ecology and Evolution, vol. 14, no. 5, pp. 170–172, 1999.
[16]  N. Hillgarth and J. C. Wingfield, “Parasite-mediated sexual selection: endocrine aspects,” in Parasite Mediated Sexual Selection: Endocrine Aspects, D. H. Clayton and J. Moore, Eds., pp. 78–104, Oxford University Press, Oxford, UK, 1997.
[17]  Y. Moret and P. Schmid-Hempel, “Survival for immunity: the price of immune system activation for bumblebee workers,” Science, vol. 290, no. 5494, pp. 1166–1168, 2000.
[18]  M. Djawdan, M. R. Rose, and T. J. Bradley, “Does selection for stress resistance lower metabolic rate?” Ecology, vol. 78, no. 3, pp. 828–837, 1997.
[19]  J. Ma, A. K. Benson, S. D. Kachman, Z. Hu, and L. G. Harshman, “Drosophila melanogaster selection for survival of Bacillus cereus infection: life history trait indirect responses,” The International Journal of Evolution, vol. 2012, Article ID 935970, 2012.
[20]  K. A. McKean and B. P. Lazzaro, “The costs of immunity and the evolution of of immunological defense mechanisms,” in Mechanisms of Life History Evolution, T. Flatt and A. Heyland, Eds., Oxford University Press, 2011.
[21]  W. L. Nicholson and P. Setlow, “Sporulation, germination and outgrowth,” in Molecular Biological Methods for Bacillus, C. R. Harwood and S. M. Cutting, Eds., pp. 391–450, John Wiley and Sons, Chichester, UK, 1990.
[22]  J. R. B. Lighton, Measuring Metabolic Rates, a Manual for Scientists, Oxford University Press, Oxford, UK, 2008.
[23]  D. S. Richard, R. Rybczynski, T. G. Wilson et al., “Insulin signaling is necessary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and ecdysteroids: female sterility of the chico1 insulin signaling mutation is autonomous to the ovary,” Journal of Insect Physiology, vol. 51, no. 4, pp. 455–464, 2005.
[24]  Y. Zhang, D. Sturgill, M. Parisi, S. Kumar, and B. Oliver, “Constraint and turnover in sex-biased gene expression in the genus Drosophila,” Nature, vol. 450, no. 7167, pp. 233–237, 2007.
[25]  L. G. Harshman and J. L. Schmid, “Evolution of starvation resistance in Drosophila melanogaster: aspects of metabolism and counter-impact selection,” Evolution, vol. 52, no. 6, pp. 1679–1685, 1998.
[26]  F. A. Lints and C. V. Lints, “Respiration in drosophila. II. Respiration in relation to age by wild, inbred and hybrid drosophila melanogaster imagos,” Experimental Gerontology, vol. 3, no. 4, pp. 341–349, 1968.
[27]  A. A. Khazaeli, W. Van Voorhies, and J. W. Curtsinger, “Longevity and metabolism in Drosophila melanogaster: genetic correlations between life span and age-specific metabolic rate in populations artificially selected for long life,” Genetics, vol. 169, no. 1, pp. 231–242, 2005.
[28]  T. E. Schwasinger, S. D. Kachman, and L. G. Harshman, “Evolution of starvation resistance in Drosophila melanogaster: measurement of direct and correlated responses to artificial selection,” Journal of Evolutionary Biology, vol. 25, pp. 378–387, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413