全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chemical and Functional Properties of Chia Seed (Salvia hispanica L.) Gum

DOI: 10.1155/2014/241053

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chia (Salvia hispanica L.) constitutes a potential alternative raw material and ingredient in food industry applications due to its dietary fiber content. Gum can be extracted from its dietary fiber fractions for use as an additive to control viscosity, stability, texture, and consistency in food systems. The gum extracted from chia seeds was characterized to determine their quality and potential as functional food additives. The extracted chia gum contained 26.2% fat and a portion was submitted to fat extraction, producing two fractions: gum with fat (FCG) and gum partly defatted (PDCG). Proximal composition and physicochemical characterization showed these fractions to be different ( ). The PDCG had higher protein, ash, and carbohydrates content than the FCG, in addition to higher water-holding (110.5?g water/g fiber) and water-binding capacities (0.84?g water/g fiber). The FCG had greater oil-holding capacity (25.7?g oil/g fiber) and water absorption capacity (44?g water/g fiber). In dispersion trials, the gums exhibited a non-Newtonian fluid behavior, specifically shear thinning or pseudoplastic type. PDCG had more viscosity than FCG. Chia seed is an excellent natural source of gum with good physicochemical and functional qualities, and is very promising for use in food industry. 1. Introduction The Chia (Salvia hispanica) seed was used as an offering to the Aztec gods, and, because of its religious use, it essentially disappeared for 500 years. This is an annual herbaceous plant belonging to the Lamiaceae or Labiatae family. In pre-Columbian times, it was one of the basic foods of several Central American civilizations, less important than corn and beans, but more important than amaranth [1]. Seeds are consumed in México, Argentina, and the southwestern United States. The chemical composition reports contents of protein (15–25%), fats (30–33%), carbohydrates (26–41%), dietary fiber (18–30%), and ash (4-5%). It also contains a high amount of vitamins, minerals, and antioxidants [2]. Chia seeds have been investigated and recommended due to their high levels of proteins, antioxidants, dietary fiber, vitamins, and minerals but particularly due to their oil content with the highest proportion of α-linolenic acid ( -3) compared to other natural sources known to date [3]. Chia seeds contain up to 39% of oil, which has the highest known content of α-linolenic acid, up to 68% [4]. Chia seed gum has the potential for industrial use because of its slimy properties, evident even at very low concentration, and because the plant, native to America, grows well in

References

[1]  R. Ayerza and W. Coates, “Composition of chia (Salvia hispánica) grown in six tropical and subtropical ecosystems of South America,” Tropical Science, vol. 44, pp. 131–135, 2004.
[2]  V. Y. Ixtaina, S. M. Nolasco, and M. C. Tomás, “Physical properties of chia (Salvia hispanica L.) seeds,” Industrial Crops and Products, vol. 28, no. 3, pp. 286–293, 2008.
[3]  E. N. Guiotto, V. Y. Ixtaina, M. C. M. Tomás, and S. M. Nolasco, “Moisture-dependent engineering properties of chia (Salvia hispánica L.) seeds,” in Food Industry, pp. 381–397, INTECH, 2013.
[4]  R. Ayerza and W. Coates, “Omega-3 enriched eggs: the influence of dietary α-linolenic fatty acid source on egg production and composition,” Canadian Journal of Animal Science, vol. 81, no. 3, pp. 355–362, 2000.
[5]  J. M. BeMiller, Whistler, R. L. Barkalow, and D. G. Aloe, “Chia, flaxseed, okra, psyllium seed, quince seed and tamarind gums,” in Industrial Gums: Polysaccharides and Their Derivatives, pp. 227–256, Academic Press, 3rd edition, 1993.
[6]  AOAC. Association of Official Analytical Chemists, Official Methods of Analysis, Washington, DC, USA, 20th edition, 1997.
[7]  AACC, Approved Methods of the American Association of Cereal Chemists, American Association of Cereal Chemists, St. Paul, Minn, USA, 1984.
[8]  J. Chen, M. Piva, and T. P. Labuza, “Evaluation of water binding capacity (WBC) of food fiber sources,” Journal of Food Science, vol. 49, no. 1, pp. 59–63, 1984.
[9]  C.-F. Chau, P. C. K. Cheung, and Y.-S. Wong, “Functional properties of protein concentrates from three Chinese indigenous legume seeds,” Journal of Agricultural and Food Chemistry, vol. 45, no. 7, pp. 2500–2503, 1997.
[10]  G. Li and K. C. Chang, “Viscosity and gelling characteristics of sunflower pectin as affected by chemical and physical factors,” Journal of Agricultural and Food Chemistry, vol. 45, no. 12, pp. 4785–4789, 1997.
[11]  D. C. Montgomery, Dise?o y Análisis de Experimentos, Editorial Limusa Wiley, Yucatán, México, 2nd edition, 2004.
[12]  L. Sciarini, P. Ribotta, G. Pérez, and A. León, Extracción y Caracterización del Hidrocoloide de la Semilla de Gleditsia triacanthos, Facultad de Ciencias Agropecuarias., Córdoba, Argentina, 2005.
[13]  B. D. Oomah, E. O. Kenaschuk, W. Cui, and G. Mazza, “Variation in the composition of water-soluble polysaccharides in flaxseed,” Journal of Agricultural and Food Chemistry, vol. 43, no. 6, pp. 1484–1488, 1995.
[14]  J. A. Vazquez-Ovando, J. G. Rosado-Rubio, L. A. Chel-Guerreo, and D. Betancur-Ancona, “Procesamiento en Seco de Harina de Chia (Salvia hispanica L.): Caracterizacion Quimica de Fibra y Proteina,” CYTA-Journal of Food, vol. 2, pp. 117–127, 2010.
[15]  E. Kader, A. Molina, E. León, P. G. Negrón, and M. Lachman, “Caracterización Analítica de Cinco Gomas Mimosaceae Venezolanas y su Posible Aplicación Industrial. Nota Técnica,” Revista Facultad De Agronomía, vol. 19, pp. 230–239, 2002.
[16]  M. E. Bosquez, Desarrollo de Recubrimientos Comestibles Formulados con Goma de Mezquite y Cera de Candelilla para la Conservación de Frutas, Universidad Autónoma Metropolitana-Iztapalapa. Biotecnología, 2005.
[17]  F. Y. López, F. Goycoolea, M. Valdez, and A. M. Calderón, “Goma de Mezquite: una Alternativa de Uso Industrial,” Interciencia, vol. 31, no. 3, pp. 183–189, 2006.
[18]  M. P. Yadav, R. A. Moreau, and K. B. Hicks, “Phenolic acids, lipids, and proteins associated with purified corn fiber arabinoxylans,” Journal of Agricultural and Food Chemistry, vol. 55, no. 3, pp. 943–947, 2007.
[19]  M. Zambrano, R. Meléndez, and Y. Gallardo, “Propiedades Funcionales y Metodología para su Evaluación en Fibra Dietética,” in Fibra Dietética en Iberoamérica: Tecnología y Salud. Obtención, caracterización, efecto fisiológico y aplicación en alimentos, F. Lajolo, F. Saura-Calixto, E. Witting, and E. Wenzel, Eds., pp. 195–209, Varela Editora e Livraría LTDA, S?o Paulo, Brazil, 2001.
[20]  H.-Y. Yeh, N.-W. Su, and M.-H. Lee, “Chemical compositions and physicochemical properties of the fiber-rich materials prepared from shoyu mash residue,” Journal of Agricultural and Food Chemistry, vol. 53, no. 11, pp. 4361–4366, 2005.
[21]  A. Vázquez-Ovando, G. Rosado-Rubio, L. Chel-Guerrero, and D. Betancur-Ancona, “Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.),” LWT-Food Science and Technology, vol. 42, no. 1, pp. 168–173, 2009.
[22]  J. Baquero and A. Bermúdez, Los Residuos Vegetales de la Industria del Jugo de Maracuyá, como Fuente de Fibra Dietética, CYTED. Temas en Tecnología de Alimentos, Bogotá, Colombia, pp. 207–213, 1998.
[23]  Y. Tamayo and A. Bermudez, Los residuos vegetales de la industria de jugos de naranja como fuente de fibra dietética, CYTED. Temas en Tecnología de Alimentos, Bogotá, Colombiapp, pp. 181–189, 1998.
[24]  S. M. Savita, K. Sheela, S. Sunanda, A. G. Shankar, and P. Ramakrishna, “Stevia rebaudiana—a functional component for food industry,” Journal of Human Ecology, vol. 15, no. 4, pp. 261–264, 2004.
[25]  B. Altunakar, S. Sahin, and G. Sumnu, “Effects of hydrocolloids on apparent viscosity of batters and quality of chicken nuggets,” Chemical Engineering Communications, vol. 193, no. 6, pp. 675–682, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413