全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quality Parameters of Six Cultivars of Blueberry Using Computer Vision

DOI: 10.1155/2013/419535

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Blueberries are considered an important source of health benefits. This work studied six blueberry cultivars: “Duke,” “Brigitta”, “Elliott”, “Centurion”, “Star,” and “Jewel”, measuring quality parameters such as °Brix, pH, moisture content using standard techniques and shape, color, and fungal presence obtained by computer vision. The storage conditions were time (0–21 days), temperature (4 and 15°C), and relative humidity (75 and 90%). Results. Significant differences ( ) were detected between fresh cultivars in pH, °Brix, shape, and color. However, the main parameters which changed depending on storage conditions, increasing at higher temperature, were color (from blue to red) and fungal presence (from 0 to 15%), both detected using computer vision, which is important to determine a shelf life of 14 days for all cultivars. Similar behavior during storage was obtained for all cultivars. Conclusion. Computer vision proved to be a reliable and simple method to objectively determine blueberry decay during storage that can be used as an alternative approach to currently used subjective measurements. 1. Introduction Blueberries have an increasing demand for popular consumption because of their nutraceutical properties [1, 2], including their high content of phenolic compounds with a wide spectrum of biochemical activities such as antioxidant, antimutagenic, cardiovascular protection, antidiabetic, vision improvement properties, and carcinogenesis inhibition [3]. Blueberries are little blue fruits of the genus Vaccinium that have short shelf life. It has been stated that under refrigeration temperatures (0°C), the shelf life of blueberries is about 14–20 days [4, 5]. The main quality indicators of the fruit are appearance (color, size, and shape), firmness or texture, flavor (soluble solids and pH), and nutritive value [6]. The color ranges from light blue to deep black blue depending on the cultivar and the presence of an epicuticular wax, which gives its attractive appearance [4]. Color changes during storage may have a profound effect on consumer acceptability [7]. Consumers demand high quality fruits which are dependent on harvest methods, cultivar characteristics, postharvest handling, and storage temperatures [1]. Computer vision (CV) is a nondestructive technology used for acquiring and analyzing digital images to obtain information of heterogeneous products. It has been regarded as a valuable tool which helps to improve the automatic assessment of food quality [8, 9]. CV has been recently used in the food industry for quality and color

References

[1]  V. Chiabrando, G. Giacalone, and L. Rolle, “Mechanical behaviour and quality traits of highbush blueberry during postharvest storage,” Journal of the Science of Food and Agriculture, vol. 89, no. 6, pp. 989–992, 2009.
[2]  N. Sinelli, A. Spinardi, V. Di Egidio, I. Mignani, and E. Casiraghi, “Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy,” Postharvest Biology and Technology, vol. 50, no. 1, pp. 31–36, 2008.
[3]  G. Antonio, F. Faria, C. Takeiti, and K. Park, “Rheological behovior of blueberry,” Ciencia y Tecnología de Alimentos, vol. 29, pp. 732–737, 2009.
[4]  M. C. Nunes, J. P. Emon, and J. K. Brecht, “Quality curves for Highbush blueberries as a function of the storage temperature,” in Proceedings of the 9th North American Blueberry Research and Extension Workers Conference; and In Small Fruits Review, pp. 423–438, Food Product press. Haworth Press, 2004.
[5]  A. Yommi and C. Godoy, “Arándanos, fisiología y tecnologías de postcosecha,” 2002, http://anterior.inta.gov.ar/f/?url=http://anterior.inta.gob.ar/balcarce/info/documentos/agric/posco/fruyhort/arandano.htm.
[6]  C. Duarte, M. Guerra, P. Daniel, A. L. Camelo, and A. Yommi, “Quality changes of highbush blueberries fruit stored in CA with different CO2 levels,” Journal of Food Science, vol. 74, no. 4, pp. S154–S159, 2009.
[7]  S. Matiacevich, P. Silva, F. Osorio, and J. Enrione, “Evaluation of blueberry color during storage using image analysis,” in Color in Food: Technological and Psychophysical Aspects, J. L. Caivano and M. P. Buera, Eds., pp. 211–218, CRC Publisher, 2011.
[8]  D. Mery, J. J. Chanona-Peréz, A. Soto et al., “Quality classification of corn tortillas using computer vision,” Journal of Food Engineering, vol. 101, pp. 357–364, 2010.
[9]  F. Pedreschi, J. León, D. Mery, and P. Moyano, “Development of a computer vision system to measure the color of potato chips,” Food Research International, vol. 39, no. 10, pp. 1092–1098, 2006.
[10]  S. Gunasekaran and K. Ding, “Using computer vision for food quality evaluation,” Food Technology, vol. 48, no. 6, pp. 151–154, 1994.
[11]  V. Leemans, H. Magein, and M. F. Destain, “Defects segmentation on “Golden Delicious” apples by using colour machine vision,” Computers and Electronics in Agriculture, vol. 20, no. 2, pp. 117–130, 1998.
[12]  L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” Journal of Research of the National Bureau of Standards, vol. 81, no. 1, pp. 89–96, 1977.
[13]  Chilean Blueberry Comittee, “Norma de calidad arándano fresco de exportación,” pp. 1–9, 2011.
[14]  G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Research and Application, vol. 30, no. 1, pp. 21–30, 2005.
[15]  Y. Yang, J. Ming, and N. Yu, “Color image quality assessment based on CIEDE2000,” Advances in Multimedia, vol. 2012, Article ID 273723, 6 pages, 2012.
[16]  M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Research and Application, vol. 26, no. 5, pp. 340–350, 2001.
[17]  J. M. Molina, D. Calvo, J. J. Medina, C. Barrau, and F. Romero, “Fruit quality parameters of some southern highbush blueberries (Vaccinium xcorymbosum L.) grown in Andalusia (Spain),” Spanish Journal of Agricultural Research, vol. 6, no. 4, pp. 671–676, 2008.
[18]  J. Duan, R. Wu, B. C. Strik, and Y. Zhao, “Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions,” Postharvest Biology and Technology, vol. 59, no. 1, pp. 71–79, 2011.
[19]  W. Kalt and J. E. McDonald, “Chemical composition of lowbush blueberry cultivars,” Journal of the American Society for Horticultural Science, vol. 121, no. 1, pp. 142–146, 1996.
[20]  C. Godoy, “Conservación de dos variedades de arándano alto en condiciones de frío convencional,” Revista Facultad de Ciencias Agrarias de UNCuyo, vol. 36, pp. 53–61, 2004.
[21]  V. Graciela Echeverría, V. Juan Ca?umir, and G. Humberto Serri, “Postharvest behavior of highbush blueberry fruits cv. O'Neal cultivated with different organic fertilization treatments,” Chilean Journal of Agricultural Research, vol. 69, no. 3, pp. 391–399, 2009.
[22]  S. Mirzaei, E. M. Goltapeh, and M. Shams-bakhsh, “Taxonomical studies on the genus Botrytis in Iran,” Journal of Agricultural Technology, vol. 3, pp. 65–76, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133